Conformal Symmetries of the Strumia and Tetradis Metric (2303.08548v1)
Abstract: In a paper, a new conformally flat metric was introduced, describing an expanding scalar field in a spherically symmetric geometry. The spacetime can be interpreted as a Schwarzschild-like model with an apparent horizon surrounding the curvature singularity. For the above metric, we present the complete conformal Lie algebra consisting of a six-dimensional subalgebra of isometries (Killing Vector Fields or KVFs) and nine proper conformal vector fields (CVFs). An interesting aspect of our findings is that there exists a gradient (proper) conformal symmetry (i.e., its bivector vanishes) which verifies the importance of gradient symmetries in constructing viable cosmological models. In addition, the 9-dimensional conformal algebra implies the existence of constants of motion along null geodesics that allow us to determine the complete solution of null geodesic equations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.