Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Intrinsic spin-orbit torque mechanism for deterministic all-electric switching of noncollinear antiferromagnets (2303.06929v2)

Published 13 Mar 2023 in cond-mat.mes-hall

Abstract: Using a pure electric current to control kagome noncollinear antiferromagnets is promising in information storage and processing, but a full description is still lacking, in particular, on intrinsic (i.e., no external magnetic fields or external spin currents) spin-orbit torques. In this work, we self-consistently describe the relations among the electronic structure, magnetic structure, spin accumulations, and intrinsic spin-orbit torques, in the magnetic dynamics of a noncollinear antiferromagnet driven by a pure electric current. Our calculation can yield a critical current density comparable with those in the experiments, when considering the boost from the out-of-plane magnetic dynamics induced by the current-driven spin accumulation on individual magnetic moments. We stress the parity symmetry breaking in deterministic switching among magnetic structures. This work will be helpful for future applications of noncollinear antiferromagnets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. Nakatsuji, N. Kiyohara,  and T. Higo, “Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature”, Nature 527, 212 (2015).
  2. M. Ikhlas, T. Tomita, T. Koretsune, M.-T. Suzuki, D. Nishio-Hamane, R. Arita, Y. Otani,  and S. Nakatsuji, “Large anomalous Nernst effect at room temperature in a chiral antiferromagnet”, Nature Physics 13, 1085 (2017).
  3. X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu,  and K. Behnia, “Anomalous Nernst and righi-leduc effects in Mn3⁢SnsubscriptMn3Sn\mathrm{Mn}_{3}\mathrm{Sn}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Sn: Berry curvature and entropy flow”, Phys. Rev. Lett. 119, 056601 (2017).
  4. H. Chen, Q. Niu,  and A. H. MacDonald, “Anomalous Hall effect arising from noncollinear antiferromagnetism”, Phys. Rev. Lett. 112, 017205 (2014).
  5. N. Kiyohara, T. Tomita,  and S. Nakatsuji, “Giant anomalous Hall effect in the chiral antiferromagnet Mn3⁢GesubscriptMn3Ge\mathrm{Mn}_{3}\mathrm{Ge}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Ge”, Phys. Rev. Applied 5, 064009 (2016).
  6. A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, et al., “Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3⁢GesubscriptMn3Ge\mathrm{Mn}_{3}\mathrm{Ge}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Ge”, Science Advances 2 (2016), 10.1126/sciadv.1501870.
  7. Z. H. Liu, Y. J. Zhang, G. D. Liu, B. Ding, E. K. Liu, H. M. Jafri, et al., “Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3⁢GasubscriptMn3Ga\mathrm{Mn}_{3}\mathrm{Ga}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Ga”, Scientific Reports 7 (2017), 10.1038/s41598-017-00621-x.
  8. Z. Q. Liu, H. Chen, J. M. Wang, J. H. Liu, K. Wang, Z. X. Feng, et al., “Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature”, Nature Electronics 1, 172 (2018).
  9. T. Ikeda, M. Tsunoda, M. Oogane, S. Oh, T. Morita,  and Y. Ando, “Anomalous Hall effect in polycrystalline Mn3⁢SnsubscriptMn3Sn\mathrm{Mn}_{3}\mathrm{Sn}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Sn thin films”, Applied Physics Letters 113, 222405 (2018).
  10. T. Higo, D. Qu, Y. Li, C. L. Chien, Y. Otani,  and S. Nakatsuji, “Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3⁢SnsubscriptMn3Sn\mathrm{Mn}_{3}\mathrm{Sn}roman_Mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Sn”, Applied Physics Letters 113, 202402 (2018a).
  11. T. Higo, H. Man, D. B. Gopman, L. Wu, T. Koretsune, O. M. J. V. T. Erve, et al., “Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal”, Nature Photonics 12, 73 (2018b).
  12. Y. Deng, X. Liu, Y. Chen, Z. Du, N. Jiang, C. Shen, E. Zhang, H. Zheng, H.-Z. Lu,  and K. Wang, “All-electrical switching of a topological non-collinear antiferromagnet at room temperature”, National Science Review  (2023), 10.1093/nsr/nwac154.
  13. R. Shindou and N. Nagaosa, ‘‘Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice”, Phys. Rev. Lett. 87, 116801 (2001).
  14. Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser,  and B. Yan, “Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTX (X=Ge, Sn, Ga, Ir, Rh, and Pt)”, Phys. Rev. B 95, 075128 (2017).
  15. J. Liu and L. Balents, “Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: mn3⁢Sn/Gesubscriptmn3SnGe{\mathrm{mn}}_{3}\mathrm{Sn}/\mathrm{Ge}roman_mn start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Sn / roman_Ge”, Phys. Rev. Lett. 119, 087202 (2017).
  16. S.-S. Zhang, H. Ishizuka, H. Zhang, G. B. Halász,  and C. D. Batista, “Real-space Berry curvature of itinerant electron systems with spin-orbit interaction”, Phys. Rev. B 101, 024420 (2020).
  17. J. Železný, Y. Zhang, C. Felser,  and B. Yan, “Spin-polarized current in noncollinear antiferromagnets”, Phys. Rev. Lett. 119, 187204 (2017).
  18. H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A. Kobayashi, et al., “Electrical manipulation of a topological antiferromagnetic state”, Nature 580, 608 (2020).
  19. B. Pal, B. K. Hazra, B. Göbel, J.-C. Jeon, A. K. Pandeya, A. Chakraborty, et al., “Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque”, Science Advances 8, eabo5930 (2022).
  20. H. Xie, X. Chen, Q. Zhang, Z. Mu, X. Zhang, B. Yan,  and Y. Wu, “Magnetization switching in polycrystalline Mn33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTSn thin film induced by self-generated spin-polarized current”, Nature Communications 13, 5744 (2022).
  21. L. Liu, T. Moriyama, D. C. Ralph,  and R. A. Buhrman, “Spin-torque ferromagnetic resonance induced by the spin Hall effect”, Phys. Rev. Lett. 106, 036601 (2011).
  22. J. Slonczewski, “Current-driven excitation of magnetic multilayers”, Journal of Magnetism and Magnetic Materials 159, L1 (1996).
  23. P. Haney, R. Duine, A. Núñez,  and A. MacDonald, “Current-induced torques in magnetic metals: Beyond spin-transfer”, Journal of Magnetism and Magnetic Materials 320, 1300 (2008).
  24. Manchon, A., and S. Zhang, 2011, “Spin Torque in Magnetic Systems: Theory,” in Handbook of Spin Transport and Magnetism, edited by Evgeny Y. Tsymbal, and Igor Zutic (CRC Press, Boca Raton), Chap. 8, pp. 157–178. .
  25. G. D. Mahan, Many-Particle Physics, 3rd ed., Physics of Solids and Liquids (Springer Science & Business Media New York, 2000).
  26. O. Gomonay, V. Baltz, A. Brataas,  and Y. Tserkovnyak, “Antiferromagnetic spin textures and dynamics”, Nature Physics 14, 213 (2018).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com