Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Large deviations of the interface height in the Golubović-Bruinsma model of stochastic growth (2303.06606v1)

Published 12 Mar 2023 in cond-mat.stat-mech

Abstract: We study large deviations of the one-point height distribution, $\mathcal{P}(H,T)$, of a stochastic interface, governed by the Golubovi\'{c}-Bruinsma equation $$ \partial_{t}h=-\nu\partial_{x}{4}h+\frac{\lambda}{2}\left(\partial_{x}h\right){2}+\sqrt{D}\,\xi(x,t)\,, $$ where $h(x,t)$ is the interface height at point $x$ and time $t$, and $\xi(x,t)$ is the Gaussian white noise. The interface is initially flat, and $H$ is defined by the relation $h(x=0,t=T)=H$. Using the optimal fluctuation method (OFM), we focus on the short-time limit. Here the typical fluctuations of $H$ are Gaussian, and we evaluate the strongly asymmetric and non-Gaussian tails of $\mathcal{P}(H,T)$. We show that the upper tail scales as $-\ln \mathcal{P}(H,T) \sim H{11/6}/T{5/6}$. The lower tail, which scales as $-\ln \mathcal{P}(H,T) \sim H{5/2}/T{1/2}$, coincides with its counterpart for the Kardar-Parisi-Zhang equation, and we uncover a simple physical mechanism behind this universality. Finally, we verify our asymptotic results for the tails, and compute the large deviation function of $H$, numerically.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.