Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A feasible method for solving an SDP relaxation of the quadratic knapsack problem (2303.06599v1)

Published 12 Mar 2023 in math.OC

Abstract: In this paper, we consider an SDP relaxation of the quadratic knapsack problem (QKP). After using the Burer-Monteiro factorization, we get a non-convex optimization problem, whose feasible region is an algebraic variety. Although there might be non-regular points on the algebraic variety, we prove that the algebraic variety is a smooth manifold except for a trivial point for a generic input data. We also analyze the local geometric properties of non-regular points on this algebraic variety. In order to maintain the equivalence between the SDP problem and its non-convex formulation, we derive a new rank condition under which these two problems are equivalent. This new rank condition can be much weaker than the classical rank condition if the coefficient matrix has certain special structures. We also prove that under an appropriate rank condition, any second order stationary point of the non-convex problem is also a global optimal solution without any regularity assumption. This result is distinguished from previous results based on LICQ-like smoothness assumption. With all these theoretical properties, we design an algorithm that equip a manifold optimization method with a strategy to escape from non-optimal non-regular points. Our algorithm can also be used as a heuristic for solving the quadratic knapsack problem. Numerical experiments are conducted to verify the high efficiency and robustness of our algorithm as compared to other SDP solvers and a heuristic method based on dynamic programming. In particular, our algorithm is able to solve the SDP relaxation of a one-million dimensional QKP with a sparse cost matrix very accurately in about 20 minutes on a modest desktop computer.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.