Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalizing Greenwald-Khanna Streaming Quantile Summaries for Weighted Inputs (2303.06288v1)

Published 11 Mar 2023 in cs.DS

Abstract: Estimating quantiles, like the median or percentiles, is a fundamental task in data mining and data science. A (streaming) quantile summary is a data structure that can process a set S of n elements in a streaming fashion and at the end, for any phi in (0,1], return a phi-quantile of S up to an eps error, i.e., return a phi'-quantile with phi'=phi +- eps. We are particularly interested in comparison-based summaries that only compare elements of the universe under a total ordering and are otherwise completely oblivious of the universe. The best known deterministic quantile summary is the 20-year old Greenwald-Khanna (GK) summary that uses O((1/eps) log(eps n)) space [SIGMOD'01]. This bound was recently proved to be optimal for all deterministic comparison-based summaries by Cormode and Vesle\'y [PODS'20]. In this paper, we study weighted quantiles, a generalization of the quantiles problem, where each element arrives with a positive integer weight which denotes the number of copies of that element being inserted. The only known method of handling weighted inputs via GK summaries is the naive approach of breaking each weighted element into multiple unweighted items and feeding them one by one to the summary, which results in a prohibitively large update time (proportional to the maximum weight of input elements). We give the first non-trivial extension of GK summaries for weighted inputs and show that it takes O((1/eps) log(eps n)) space and O(log(1/eps)+ log log(eps n)) update time per element to process a stream of length n (under some quite mild assumptions on the range of weights and eps). En route to this, we also simplify the original GK summaries for unweighted quantiles.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.