Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaporation and information puzzle for 2D nonsingular asymptotically flat black holes (2303.05557v3)

Published 9 Mar 2023 in hep-th

Abstract: We investigate the thermodynamics and the classical and semiclassical dynamics of two-dimensional ($2\text{D}$), asymptotically flat, nonsingular dilatonic black holes. They are characterized by a de Sitter core, allowing for the smearing of the classical singularity, and by the presence of two horizons with a related extremal configuration. For concreteness, we focus on a $2\text{D}$ version of the Hayward black hole. We find a second order thermodynamic phase transition, separating large unstable black holes from stable configurations close to extremality. We first describe the black-hole evaporation process using a quasistatic approximation and we show that it ends in the extremal configuration in an infinite amount of time. We go beyond the quasistatic approximation by numerically integrating the field equations for $2\text{D}$ dilaton gravity coupled to $N$ massless scalar fields, describing the radiation. We find that the inclusion of large backreaction effects ($N \gg 1$) allows for an end-point extremal configuration after a finite evaporation time. Finally, we evaluate the entanglement entropy (EE) of the radiation in the quasistatic approximation and construct the relative Page curve. We find that the EE initially grows, reaches a maximum and then goes down towards zero, in agreement with previous results in the literature. Despite the breakdown of the semiclassical approximation prevents the description of the evaporation process near extremality, we have a clear indication that the end point of the evaporation is a regular, extremal state with vanishing EE of the radiation. This means that the nonunitary evolution, which commonly characterizes the evaporation of singular black holes, could be traced back to the presence of the singularity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (104)
  1. B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 (2016) no.6, 061102.
  2. B. P. Abbott et al., “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 (2017) no.16, 161101.
  3. K. Akiyama et al., “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J. Lett. 875 (2019), L1.
  4. K. Akiyama et al., “First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,” Astrophys. J. Lett. 930 (2022) no.2, L12.
  5. R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14 (1965), 57-59.
  6. S. W. Hawking and R. Penrose, “The Singularities of gravitational collapse and cosmology,” Proc. Roy. Soc. Lond. A 314 (1970), 529-548.
  7. A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,” Phys. Lett. B 379 (1996), 99-104.
  8. A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, “Quantum geometry and black hole entropy,” Phys. Rev. Lett. 80 (1998), 904-907.
  9. S. Carlip, “Near horizon conformal symmetry and black hole entropy,” Phys. Rev. Lett. 88 (2002), 241301.
  10. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006), 181602.
  11. T. Padmanabhan, “Thermodynamical Aspects of Gravity: New insights,” Rept. Prog. Phys. 73 (2010), 046901.
  12. G. Dvali and C. Gomez, “Black Hole’s Quantum N-Portrait,” Fortsch. Phys. 61 (2013), 742-767.
  13. L. McGough and H. Verlinde, “Bekenstein-Hawking Entropy as Topological Entanglement Entropy,” JHEP 11 (2013), 208.
  14. M. Cadoni, M. Oi, and A. P. Sanna, “Quasinormal modes and microscopic structure of the Schwarzschild black hole,” Phys. Rev. D 104 (2021) no.12, L121502.
  15. S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14 (1976), 2460-2473.
  16. D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71 (1993), 3743-3746.
  17. S. D. Mathur, “The Information paradox: A Pedagogical introduction,” Class. Quant. Grav. 26 (2009), 224001.
  18. B. Hasslacher and E. Mottola, “Asymptotically Free Quantum Gravity and Black Holes,” Phys. Lett. B 99 (1981), 221-224.
  19. G. T. Horowitz and J. M. Maldacena, “The Black hole final state,” JHEP 02 (2004), 008.
  20. A. Ashtekar and M. Bojowald, “Quantum geometry and the Schwarzschild singularity,” Class. Quant. Grav. 23 (2006), 391-411.
  21. A. Ashtekar, V. Taveras, and M. Varadarajan, “Information is Not Lost in the Evaporation of 2-dimensional Black Holes,” Phys. Rev. Lett. 100 (2008), 211302.
  22. S. Hossenfelder and L. Smolin, “Conservative solutions to the black hole information problem,” Phys. Rev. D 81 (2010), 064009.
  23. M. Cadoni, M. Oi, and A. P. Sanna, “Effective models of nonsingular quantum black holes,” Phys. Rev. D 106 (2022) no.2, 024030.
  24. S. B. Giddings, “Constraints on black hole remnants,” Phys. Rev. D 49 (1994), 947-957.
  25. P. Chen, Y. C. Ong, and D.-h. Yeom, “Black Hole Remnants and the Information Loss Paradox,” Phys. Rept. 603 (2015), 1-45.
  26. G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09 (2020), 002.
  27. G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and the black hole interior,” JHEP 03 (2022), 205.
  28. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05 (2020), 013.
  29. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The entropy of Hawking radiation,” Rev. Mod. Phys. 93 (2021) no.3, 035002.
  30. M. Cadoni, M. De Laurentis, I. De Martino, R. Della Monica, M. Oi, and A. P. Sanna, “Are nonsingular black holes with super-Planckian hair ruled out by S2 star data?,” Phys. Rev. D 107 (2023) no.4, 044038.
  31. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003), 021.
  32. J. M. Maldacena, J. Michelson, and A. Strominger, “Anti-de Sitter fragmentation,” JHEP 02 (1999), 011.
  33. S. A. Hayward, “Formation and evaporation of regular black holes,” Phys. Rev. Lett. 96 (2006), 031103.
  34. V. P. Frolov, “Information loss problem and a ’black hole‘ model with a closed apparent horizon,” JHEP 05 (2014), 049.
  35. K. Sueto and H. Yoshino, “Evaporation of a nonsingular Reissner-Nordström black hole and information loss problem,” arXiv:2301.10456 [gr-qc].
  36. E. Bianchi, T. De Lorenzo, and M. Smerlak, “Entanglement entropy production in gravitational collapse: covariant regularization and solvable models,” JHEP 06 (2015), 180.
  37. V. P. Frolov and A. Zelnikov, “Quantum radiation from an evaporating nonsingular black hole,” Phys. Rev. D 95 (2017) no.12, 124028.
  38. J. M. Bardeen, “Proceedings of the international conference gr5,” 1968.
  39. I. Dymnikova, “Vacuum nonsingular black hole,” Gen. Rel. Grav. 24 (1992), 235-242.
  40. P. Nicolini, “Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review,” Int. J. Mod. Phys. A 24 (2009), 1229-1308.
  41. L. Modesto, J. W. Moffat, and P. Nicolini, “Black holes in an ultraviolet complete quantum gravity,” Phys. Lett. B 695 (2011), 397-400.
  42. V. P. Frolov, “Notes on nonsingular models of black holes,” Phys. Rev. D 94 (2016) no.10, 104056.
  43. Z.-Y. Fan and X. Wang, “Construction of Regular Black Holes in General Relativity,” Phys. Rev. D 94 (2016) no.12, 124027.
  44. M. Cadoni and A. P. Sanna, “Nonsingular black holes from conformal symmetries,” arXiv:2302.06401 [gr-qc](2023).
  45. J.-P. Hu and Y. Zhang, “Orbital motion of test particles in regular Hayward black hole space–time,” Can. J. Phys. 97 (2019) no.1, 58-62.
  46. F. Lamy, E. Gourgoulhon, T. Paumard, and F. H. Vincent, “Imaging a non-singular rotating black hole at the center of the Galaxy,” Class. Quant. Grav. 35 (2018) no.11, 115009.
  47. S. Guo, G.-R. Li, and E.-W. Liang, “Influence of accretion flow and magnetic charge on the observed shadows and rings of the Hayward black hole,” Phys. Rev. D 105 (2022) no.2, 023024.
  48. R. Della Monica and I. de Martino, “Unveiling the nature of SgrA* with the geodesic motion of S-stars,” JCAP 03 (2022) no.03, 007.
  49. D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09 (2013), 028.
  50. D. Grumiller, W. Kummer, and D. V. Vassilevich, “Dilaton gravity in two-dimensions,” Phys. Rept. 369 (2002), 327-430.
  51. D. Grumiller, R. Ruzziconi, and C. Zwikel, “Generalized dilaton gravity in 2d,” SciPost Phys. 12 (2022) no.1, 032.
  52. T. Banks and M. O’Loughlin, “Two-dimensional quantum gravity in Minkowski space,” Nucl. Phys. B 362 (1991), 649-664.
  53. M. Cavaglia, “A Note on Weyl transformations in two-dimensional dilaton gravity,” Mod. Phys. Lett. A 15 (2000), 2113-2118.
  54. C. G. Callan, Jr., S. B. Giddings, J. A. Harvey, and A. Strominger, “Evanescent black holes,” Phys. Rev. D 45 (1992) no.4, 1005.
  55. A. Bogojevic and D. Stojkovic, “A Nonsingular black hole,” Phys. Rev. D 61 (2000), 084011.
  56. M. Cadoni, “Statistical entropy of the Schwarzschild black hole,” Mod. Phys. Lett. A 21 (2006), 1879-1888.
  57. V. P. Frolov and A. Zelnikov, “Two-dimensional black holes in the limiting curvature theory of gravity,” JHEP 08 (2021), 154.
  58. M. Fitkevich, “Black bounces and remnants in dilaton gravity,” Phys. Rev. D 105 (2022) no.10, 106027.
  59. M. Trodden, V. F. Mukhanov, and R. H. Brandenberger, “A Nonsingular two-dimensional black hole,” Phys. Lett. B 316 (1993), 483-487.
  60. T. Banks and M. O’Loughlin, “Nonsingular Lagrangians for two-dimensional black holes,” Phys. Rev. D 48 (1993), 698-706.
  61. D. A. Lowe and M. O’Loughlin, “Nonsingular black hole evaporation and ’stable’ remnants,” Phys. Rev. D 48 (1993), 3735-3742.
  62. M. Cadoni, “Trace anomaly and Hawking effect in generic 2-D dilaton gravity theories,” Phys. Rev. D 53 (1996), 4413-4420.
  63. W.-Y. Ai, “Nonsingular black hole in two-dimensional asymptotically flat spacetime,” Phys. Rev. D 104 (2021) no.4, 044064.
  64. R. B. Mann, “Conservation laws and 2-D black holes in dilaton gravity,” Phys. Rev. D 47 (1993), 4438-4442.
  65. M. Cadoni and S. Mignemi, “On the conformal equivalence between 2-d black holes and Rindler space-time,” Phys. Lett. B 358 (1995), 217-222.
  66. S. Mignemi, “Black holes in generalized dilaton gravity in two-dimensions,” Annals Phys. 245 (1996), 23-36.
  67. J. Navarro-Salas and P. Navarro, “AdS(2) / CFT(1) correspondence and near extremal black hole entropy,” Nucl. Phys. B 579 (2000), 250-266.
  68. M. Cadoni, M. Ciulu, and M. Tuveri, “Symmetries, Holography and Quantum Phase Transition in Two-dimensional Dilaton AdS Gravity,” Phys. Rev. D 97 (2018) no.10, 103527.
  69. A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar, and F. Schöller, “Flat space cosmologies in two dimensions - Phase transitions and asymptotic mass-domination,” Phys. Rev. D 90 (2014) no.8, 084041.
  70. S. B. Giddings and A. Strominger, “Dynamics of extremal black holes,” Phys. Rev. D 46 (1992), 627-637.
  71. J. M. Bardeen and G. T. Horowitz, “The Extreme Kerr throat geometry: A Vacuum analog of AdS(2) x S**2,” Phys. Rev. D 60 (1999), 104030.
  72. C. R. Nappi and A. Pasquinucci, “Thermodynamics of two-dimensional black holes,” Mod. Phys. Lett. A 7 (1992), 3337-3346.
  73. G. Kunstatter, R. Petryk, and S. Shelemy, “Hamiltonian thermodynamics of black holes in generic 2-D dilaton gravity,” Phys. Rev. D 57 (1998), 3537-3547.
  74. M.-S. Ma and R. Zhao, “Corrected form of the first law of thermodynamics for regular black holes,” Class. Quant. Grav. 31 (2014), 245014.
  75. A. Kumar and K. Ray, “Thermodynamics of two-dimensional black holes,” Phys. Lett. B 351 (1995), 431-438.
  76. S. M. Carroll, M. C. Johnson, and L. Randall, “Extremal limits and black hole entropy,” JHEP 11 (2009), 109.
  77. A. Almheiri and B. Kang, “Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes,” JHEP 10 (2016), 052.
  78. T. R. Cardoso and A. S. de Castro, “The Blackbody radiation in D-dimensional universes,” Rev. Bras. Ens. Fis. 27 (2005), 559-563.
  79. A. Akil, M. Cadoni, L. Modesto, M. Oi, and A. P. Sanna, “Semiclassical spacetimes at super-Planckian scales from delocalized sources,” 11 2022.
  80. E. Alesci and L. Modesto, “Particle Creation by Loop Black Holes,” Gen. Rel. Grav. 46 (2014), 1656.
  81. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and M. Visser, “On the viability of regular black holes,” JHEP 07 (2018), 023.
  82. A. Bonanno and M. Reuter, “Renormalization group improved black hole space-times,” Phys. Rev. D 62 (2000), 043008.
  83. M. Cadoni and S. Mignemi, “Nonsingular four-dimensional black holes and the Jackiw-Teitelboim theory,” Phys. Rev. D 51 (1995), 4319-4329.
  84. S. M. Christensen and S. A. Fulling, “Trace Anomalies and the Hawking Effect,” Phys. Rev. D 15 (1977), 2088-2104.
  85. A. Bilal and C. G. Callan, Jr., “Liouville models of black hole evaporation,” Nucl. Phys. B 394 (1993), 73-100.
  86. J. G. Russo, L. Susskind, and L. Thorlacius, “The Endpoint of Hawking radiation,” Phys. Rev. D 46 (1992), 3444-3449.
  87. J. G. Russo, L. Susskind, and L. Thorlacius, “Black hole evaporation in (1+1)-dimensions,” Phys. Lett. B 292 (1992), 13-18.
  88. T. Piran and A. Strominger, “Numerical analysis of black hole evaporation,” Phys. Rev. D 48 (1993), 4729-4734.
  89. D. A. Lowe, “Semiclassical approach to black hole evaporation,” Phys. Rev. D 47 (1993), 2446-2453.
  90. A. Ashtekar, F. Pretorius, and F. M. Ramazanoglu, “Evaporation of 2-Dimensional Black Holes,” Phys. Rev. D 83 (2011), 044040.
  91. K. Diba and D. A. Lowe, “Near extremal black hole evaporation in asymptotically flat space-time,” Phys. Rev. D 66 (2002), 024039.
  92. T. M. Fiola, J. Preskill, A. Strominger, and S. P. Trivedi, “Black hole thermodynamics and information loss in two-dimensions,” Phys. Rev. D 50 (1994), 3987-4014.
  93. A. Almheiri, R. Mahajan, and J. Maldacena, “Islands outside the horizon,” arXiv:1910.11077 [hep-th].
  94. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42 (2009), 504005.
  95. J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys. 61 (2013), 781-811.
  96. X. Wang, R. Li, and J. Wang, “Islands and Page curves of Reissner-Nordström black holes,” JHEP 04 (2021), 103.
  97. W. Kim and M. Nam, “Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island,” Eur. Phys. J. C 81 (2021) no.10, 869.
  98. K. Goswami and K. Narayan, “Small Schwarzschild de Sitter black holes, quantum extremal surfaces and islands,” JHEP 10 (2022), 031.
  99. A. Svesko, E. Verheijden, E. P. Verlinde, and M. R. Visser, “Quasi-local energy and microcanonical entropy in two-dimensional nearly de Sitter gravity,” JHEP 08 (2022), 075.
  100. D. S. Ageev, I. Y. Aref’eva, A. I. Belokon, V. V. Pushkarev, and T. A. Rusalev, “Entanglement entropy in de Sitter: no pure states for conformal matter,” arXiv:2304.12351 [hep-th].
  101. K. Hashimoto, N. Iizuka, and Y. Matsuo, “Islands in Schwarzschild black holes,” JHEP 06 (2020), 085.
  102. F. F. Gautason, L. Schneiderbauer, W. Sybesma, and L. Thorlacius, “Page Curve for an Evaporating Black Hole,” JHEP 05 (2020), 091.
  103. T. Hartman, E. Shaghoulian, and A. Strominger, “Islands in Asymptotically Flat 2D Gravity,” JHEP 07 (2020), 022.
  104. F. S. N. Lobo, M. E. Rodrigues, M. V. d. S. Silva, A. Simpson, and M. Visser, “Novel black-bounce spacetimes: wormholes, regularity, energy conditions, and causal structure,” Phys. Rev. D 103 (2021) no.8, 084052.
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube