Transcendence measure of $e^{1/n}$ (2303.05542v1)
Abstract: For a given transcendental number $\xi$ and for any polynomial $P(X)=: \lambda_0+\cdots+\lambda_k Xk \in \mathbb{Z}[X]$, we know that $ P(\xi) \neq 0.$ Let $k \geq 1$ and $\omega (k, H)$ be the infimum of the numbers $r > 0$ satisfying the estimate $$ \left|\lambda_0+\lambda_1 \xi+\lambda_2 \xi{2}+ \ldots +\lambda_k\xi{k}\right| > \frac{1}{Hr}, $$ for all $(\lambda_0, \ldots ,\lambda_k)T \in \mathbb{Z}{k+1}\setminus{\overline{0}}$ with $\max_{1\le i\le k} {|\lambda_i|} \le H$. Any function greater than or equal to $\omega (k, H)$ is a {\it transcendence measure of $\xi$}. In this article, we find out a transcendence measure of $ e{1/n}$ which improves a result proved by Mahler(\cite{Mahler}) in 1975.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.