Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernel-based Regularized Iterative Learning Control of Repetitive Linear Time-varying Systems (2303.03822v1)

Published 7 Mar 2023 in eess.SY and cs.SY

Abstract: For data-driven iterative learning control (ILC) methods, both the model estimation and controller design problems are converted to parameter estimation problems for some chosen model structures. It is well-known that if the model order is not chosen carefully, models with either large variance or large bias would be resulted, which is one of the obstacles to further improve the modeling and tracking performances of data-driven ILC in practice. An emerging trend in the system identification community to deal with this issue is using regularization instead of the statistical tests, e.g., AIC, BIC, and one of the representatives is the so-called kernel-based regularization method (KRM). In this paper, we integrate KRM into data-driven ILC to handle a class of repetitive linear time-varying systems, and moreover, we show that the proposed method has ultimately bounded tracking error in the iteration domain. The numerical simulation results show that in contrast with the least squares method and some existing data-driven ILC methods, the proposed one can give faster convergence speed, better accuracy and robustness in terms of the tracking performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.