Fast data-driven iterative learning control for linear system with output disturbance (2312.14326v1)
Abstract: This paper studies data-driven iterative learning control (ILC) for linear time-invariant (LTI) systems with unknown dynamics, output disturbances and input box-constraints. Our main contributions are: 1) using a non-parametric data-driven representation of the system dynamics, for dealing with the unknown system dynamics in the context of ILC, 2) design of a fast ILC method for dealing with output disturbances, model uncertainty and input constraints. A complete design method is given in this paper, which consists of the data-driven representation, controller formulation, acceleration strategy and convergence analysis. A batch of numerical experiments and a case study on a high-precision robotic motion system are given in the end to show the effectiveness of the proposed method.
- \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed A norm optimal approach to time-varying ILC with application to a multi-axis robotic testbed.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Control Systems Technology191166-180. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2001. \BBOQ\APACrefatitleActive noise control for periodic disturbances Active noise control for periodic disturbances.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Control Systems Technology91200-205. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitleA high precision motion control system with application to microscale robotic deposition A high precision motion control system with application to microscale robotic deposition.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Control Systems Technology1461008-1020. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleData-driven predictive current control for synchronous motor drives Data-driven predictive current control for synchronous motor drives.\BBCQ \BIn \APACrefbtitle2020 IEEE Energy Conversion Congress and Exposition (ECCE) 2020 IEEE Energy Conversion Congress and Exposition (ECCE) (\BPG 213-218). \APACaddressPublisherDetroit, MI, USA. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleA unified data-driven design framework of optimality-based generalized iterative learning control A unified data-driven design framework of optimality-based generalized iterative learning control.\BBCQ \APACjournalVolNumPagesComputers & Chemical Engineering7710-23. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleComputationally efficient data-driven higher order optimal iterative learning control Computationally efficient data-driven higher order optimal iterative learning control.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Neural Networks and Learning Systems295971 - 5980. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleAccelerated norm-optimal iterative learning control algorithms using successive projection Accelerated norm-optimal iterative learning control algorithms using successive projection.\BBCQ \APACjournalVolNumPagesInternational Journal of Control8281469–1484. \PrintBackRefs\CurrentBib
- \APACinsertmetastarDemmel_1987{APACrefauthors}Demmel, J\BPBIW. \APACrefYearMonthDay1987. \BBOQ\APACrefatitleThe Smallest Perturbation of a Submatrix which Lowers the Rank and Constrained Total Least Squares Problems The smallest perturbation of a submatrix which lowers the rank and constrained total least squares problems.\BBCQ \APACjournalVolNumPagesSIAM Journal on Numerical Analysis241199-206. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleData-driven iterative inversion-based control: Achieving robustness through nonlinear learning Data-driven iterative inversion-based control: Achieving robustness through nonlinear learning.\BBCQ \APACjournalVolNumPagesAutomatica107342-352. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleFirst-order methods of smooth convex optimization with inexact oracle First-order methods of smooth convex optimization with inexact oracle.\BBCQ \APACjournalVolNumPagesMathematical Programming14637–75. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleData‐enabled predictive control for quadcopters Data‐enabled predictive control for quadcopters.\BBCQ \APACjournalVolNumPagesInternational Journal of Robust and Nonlinear Control318916–8936. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleQuasi-Newton-type optimized iterative learning control for discrete linear time invariant systems Quasi-Newton-type optimized iterative learning control for discrete linear time invariant systems.\BBCQ \APACjournalVolNumPagesControl Theory and Technology13256–265. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2019. \BBOQ\APACrefatitleIterative Learning Control Based on Nesterov Accelerated Gradient Method Iterative learning control based on Nesterov accelerated gradient method.\BBCQ \APACjournalVolNumPagesIEEE Access7115836-115842. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleDiscrete-time inverse model-based iterative learning control: stability, monotonicity and robustness Discrete-time inverse model-based iterative learning control: stability, monotonicity and robustness.\BBCQ \APACjournalVolNumPagesInternational Journal of Control788577–586. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2013. \BBOQ\APACrefatitleSubspace identification of process dynamics for iterative learning control Subspace identification of process dynamics for iterative learning control.\BBCQ \BIn \APACrefbtitleProceedings of the 8th International Workshop on Multidimensional Systems Proceedings of the 8th International Workshop on Multidimensional Systems (\BPG 39-44). \APACaddressPublisherErlangen, Germany. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleData-driven norm optimal iterative learning control for point-to-point tasks Data-driven norm optimal iterative learning control for point-to-point tasks.\BBCQ \APACjournalVolNumPagesIFAC-PapersOnLine5621051–1056. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2022. \BBOQ\APACrefatitleNorm Optimal Iterative Learning Control: A Data-Driven Approach Norm optimal iterative learning control: A data-driven approach.\BBCQ \APACjournalVolNumPagesIFAC-PapersOnLine5512482–487. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2021. \BBOQ\APACrefatitleBehavioral systems theory in data-driven analysis, signal processing, and control Behavioral systems theory in data-driven analysis, signal processing, and control.\BBCQ \APACjournalVolNumPagesAnnual Reviews in Control5242–64. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleIdentifiability in the behavioral setting Identifiability in the behavioral setting.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Automatic Control6831667-1677. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2020. \BBOQ\APACrefatitleData-driven structured noise filtering via common dynamics estimation Data-driven structured noise filtering via common dynamics estimation.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Signal Processing683064-3073. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleData-driven simulation and control Data-driven simulation and control.\BBCQ \APACjournalVolNumPagesInternational Journal of Control81121946–1959. \PrintBackRefs\CurrentBib
- \APACinsertmetastarNesterov_1983{APACrefauthors}Nesterov, Y. \APACrefYearMonthDay1983. \BBOQ\APACrefatitleA method of solving a convex programming problem with convergence rate O(1/k2)1superscript𝑘2(1/k^{2})( 1 / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) A method of solving a convex programming problem with convergence rate O(1/k2)1superscript𝑘2(1/k^{2})( 1 / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ).\BBCQ \APACjournalVolNumPagesDoklady Akademii Nauk272372–376. \PrintBackRefs\CurrentBib
- \APACinsertmetastarNesterov_2005{APACrefauthors}Nesterov, Y. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleSmooth minimization of non-smooth functions Smooth minimization of non-smooth functions.\BBCQ \APACjournalVolNumPagesMathematical Programming103127–152. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2001. \BBOQ\APACrefatitleA new subspace based approach to iterative learning control A new subspace based approach to iterative learning control.\BBCQ \BIn \APACrefbtitle2001 European Control Conference (ECC) 2001 European Control Conference (ECC) (\BPG 3375-3380). \APACaddressPublisherPorto, Portugal. \PrintBackRefs\CurrentBib
- \APACinsertmetastarPark_1999{APACrefauthors}Park, K\BPBIH. \APACrefYearMonthDay1999. \BBOQ\APACrefatitleA study on the robustness of a PID-type iterative learning controller against initial state error A study on the robustness of a PID-type iterative learning controller against initial state error.\BBCQ \APACjournalVolNumPagesInternational Journal of Systems Science30149-59. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleRobustness analysis of an adjoint optimal iterative learning controller with experimental verification Robustness analysis of an adjoint optimal iterative learning controller with experimental verification.\BBCQ \APACjournalVolNumPagesInternational Journal of Robust and Nonlinear Control181089–1113. \PrintBackRefs\CurrentBib
- \APACinsertmetastarTayebi_2004{APACrefauthors}Tayebi, A. \APACrefYearMonthDay2004. \BBOQ\APACrefatitleAdaptive iterative learning control for robot manipulators Adaptive iterative learning control for robot manipulators.\BBCQ \APACjournalVolNumPagesAutomatica71195-1203. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleIterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Control Systems Technology136921-931. \PrintBackRefs\CurrentBib
- \APACrefYear2012. \APACrefbtitleSubspace identification for linear systems: Theory, Implementation, Applications Subspace identification for linear systems: Theory, Implementation, Applications. \APACaddressPublisherThe NetherlandersKluwer Academic Publishers Group. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2023. \BBOQ\APACrefatitleData-Based Optimization Control for Learning Systems Data-based optimization control for learning systems.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Circuits and Systems II: Express Briefs7072560–2564. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleA note on persistency of excitation A note on persistency of excitation.\BBCQ \APACjournalVolNumPagesSystems & Control Letters544325–329. \PrintBackRefs\CurrentBib