Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An RRAM-Based Implementation of a Template Matching Circuit for Low-Power Analogue Classification (2303.02651v3)

Published 5 Mar 2023 in eess.SP

Abstract: Recent advances in machine learning and neuro-inspired systems enabled the increased interest in efficient pattern recognition at the edge. A wide variety of applications, such as near-sensor classification, require fast and low-power approaches for pattern matching through the use of associative memories and their more well-known implementation, Content Addressable Memories (CAMs). Towards addressing the need for low-power classification, this work showcases an RRAM-based analogue CAM (ACAM) intended for template matching applications, providing a low-power reconfigurable classification engine for the extreme edge. The circuit uses a low component count at 6T2R2M, comparable with the most compact existing cells of this type. In this work, we demonstrate a hardware prototype, built with commercial off-the-shelf (COTS) components for the MOSFET-based circuits, that implements rows of 6T2R2M employing TiOx-based RRAM devices developed in-house, showcasing competitive matching window configurability and definition. Furthermore, through simulations, we validate the performance of the proposed circuit by using a commercially available 180nm technology and in-house RRAM data-driven model to assess the energy dissipation, exhibiting 60 pJ per classification event.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube