Papers
Topics
Authors
Recent
Search
2000 character limit reached

L-based numerical linked cluster expansion for square lattice models

Published 4 Mar 2023 in cond-mat.stat-mech and physics.comp-ph | (2303.02458v3)

Abstract: We introduce a numerical linked cluster expansion for square-lattice models whose building block is an L-shape cluster. For the spin-1/2 models studied in this work, we find that this expansion exhibits a similar or better convergence of the bare sums than that of the (larger) square-shaped clusters, and can be used with resummation techniques (like the site- and bond-based expansions) to obtain results at even lower temperatures. We compare the performance of weak- and strong-embedding versions of this expansion in various spin-1/2 models, and show that the strong-embedding version is preferable because of its convergence properties and lower computational cost. Finally, we show that the expansion based on the L-shape cluster can be naturally used to study properties of lattice models that smoothly connect the square and triangular lattice geometries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.