L-based numerical linked cluster expansion for square lattice models (2303.02458v3)
Abstract: We introduce a numerical linked cluster expansion for square-lattice models whose building block is an L-shape cluster. For the spin-1/2 models studied in this work, we find that this expansion exhibits a similar or better convergence of the bare sums than that of the (larger) square-shaped clusters, and can be used with resummation techniques (like the site- and bond-based expansions) to obtain results at even lower temperatures. We compare the performance of weak- and strong-embedding versions of this expansion in various spin-1/2 models, and show that the strong-embedding version is preferable because of its convergence properties and lower computational cost. Finally, we show that the expansion based on the L-shape cluster can be naturally used to study properties of lattice models that smoothly connect the square and triangular lattice geometries.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.