Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials (2303.02216v2)

Published 3 Mar 2023 in cs.LG, cs.AI, and physics.chem-ph

Abstract: Recent advances in equivariant graph neural networks (GNNs) have made deep learning amenable to developing fast surrogate models to expensive ab initio quantum mechanics (QM) approaches for molecular potential predictions. However, building accurate and transferable potential models using GNNs remains challenging, as the data is greatly limited by the expensive computational costs and level of theory of QM methods, especially for large and complex molecular systems. In this work, we propose denoise pretraining on nonequilibrium molecular conformations to achieve more accurate and transferable GNN potential predictions. Specifically, atomic coordinates of sampled nonequilibrium conformations are perturbed by random noises and GNNs are pretrained to denoise the perturbed molecular conformations which recovers the original coordinates. Rigorous experiments on multiple benchmarks reveal that pretraining significantly improves the accuracy of neural potentials. Furthermore, we show that the proposed pretraining approach is model-agnostic, as it improves the performance of different invariant and equivariant GNNs. Notably, our models pretrained on small molecules demonstrate remarkable transferability, improving performance when fine-tuned on diverse molecular systems, including different elements, charged molecules, biomolecules, and larger systems. These results highlight the potential for leveraging denoise pretraining approaches to build more generalizable neural potentials for complex molecular systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Fu, X.; Wu, Z.; Wang, W.; Xie, T.; Keten, S.; Gomez-Bombarelli, R.; Jaakkola, T. Forces are not enough: Benchmark and critical evaluation for machine learning force fields with molecular simulations. arXiv preprint arXiv:2210.07237 2022,
  2. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry. International conference on machine learning. 2017; pp 1263–1272
  3. Gasteiger, J.; Groß, J.; Günnemann, S. Directional Message Passing for Molecular Graphs. International Conference on Learning Representations. 2020
  4. Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; Riley, P. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219 2018,
  5. Anderson, B.; Hy, T. S.; Kondor, R. Cormorant: Covariant molecular neural networks. Advances in neural information processing systems 2019, 32
  6. Brandstetter, J.; Hesselink, R.; van der Pol, E.; Bekkers, E. J.; Welling, M. Geometric and Physical Quantities improve E(3) Equivariant Message Passing. International Conference on Learning Representations. 2022
  7. Jing, B.; Eismann, S.; Suriana, P.; Townshend, R. J. L.; Dror, R. Learning from Protein Structure with Geometric Vector Perceptrons. International Conference on Learning Representations. 2021
  8. Villar, S.; Hogg, D. W.; Storey-Fisher, K.; Yao, W.; Blum-Smith, B. Scalars are universal: Equivariant machine learning, structured like classical physics. Advances in Neural Information Processing Systems. 2021
  9. Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. International Conference on Machine Learning. 2021; pp 9377–9388
  10. Thölke, P.; De Fabritiis, G. TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials. arXiv preprint arXiv:2202.02541 2022,
  11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Advances in neural information processing systems 2017, 30
  12. Hadsell, R.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). 2006; pp 1735–1742
  13. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. International conference on machine learning. 2020; pp 1597–1607
  14. Hu*, W.; Liu*, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for Pre-training Graph Neural Networks. International Conference on Learning Representations. 2020
  15. Liu, Y.; Jin, M.; Pan, S.; Zhou, C.; Zheng, Y.; Xia, F.; Yu, P. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering 2022,
  16. Krishnan, R.; Rajpurkar, P.; Topol, E. J. Self-supervised learning in medicine and healthcare. Nature Biomedical Engineering 2022, 1–7
  17. Cao, Z.; Magar, R.; Wang, Y.; Farimani, A. B. MOFormer: Self-Supervised Transformer model for Metal-Organic Framework Property Prediction. arXiv preprint arXiv:2210.14188 2022,
  18. Zhang, S.; Hu, Z.; Subramonian, A.; Sun, Y. Motif-driven contrastive learning of graph representations. arXiv preprint arXiv:2012.12533 2020,
  19. Wang, Y.; Magar, R.; Liang, C.; Barati Farimani, A. Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast. Journal of Chemical Information and Modeling 2022,
  20. Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; Tang, J. Pre-training Molecular Graph Representation with 3D Geometry. International Conference on Learning Representations. 2022
  21. Stärk, H.; Beaini, D.; Corso, G.; Tossou, P.; Dallago, C.; Günnemann, S.; Liò, P. 3d infomax improves gnns for molecular property prediction. International Conference on Machine Learning. 2022; pp 20479–20502
  22. Zaidi, S.; Schaarschmidt, M.; Martens, J.; Kim, H.; Teh, Y. W.; Sanchez-Gonzalez, A.; Battaglia, P.; Pascanu, R.; Godwin, J. Pre-training via Denoising for Molecular Property Prediction. arXiv preprint arXiv:2206.00133 2022,
  23. Liu, S.; Guo, H.; Tang, J. Molecular geometry pretraining with se (3)-invariant denoising distance matching. arXiv preprint arXiv:2206.13602 2022,
  24. Zhou, G.; Gao, Z.; Ding, Q.; Zheng, H.; Xu, H.; Wei, Z.; Zhang, L.; Ke, G. Uni-Mol: A Universal 3D Molecular Representation Learning Framework. The Eleventh International Conference on Learning Representations. 2023
  25. Satorras, V. G.; Hoogeboom, E.; Welling, M. E (n) equivariant graph neural networks. International conference on machine learning. 2021; pp 9323–9332
  26. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? International Conference on Learning Representations. 2019
  27. Xie, T.; Fu, X.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. S. Crystal Diffusion Variational Autoencoder for Periodic Material Generation. International Conference on Learning Representations. 2022
  28. Arts, M.; Satorras, V. G.; Huang, C.-W.; Zuegner, D.; Federici, M.; Clementi, C.; Noé, F.; Pinsler, R.; Berg, R. v. d. Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics. arXiv preprint arXiv:2302.00600 2023,
  29. Schütt, K.; Kindermans, P.-J.; Sauceda Felix, H. E.; Chmiela, S.; Tkatchenko, A.; Müller, K.-R. Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in neural information processing systems 2017, 30
  30. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 2017,
  31. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. International Conference on Learning Representations. 2017
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuyang Wang (111 papers)
  2. Changwen Xu (4 papers)
  3. Zijie Li (14 papers)
  4. Amir Barati Farimani (121 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.