Pretraining Strategy for Neural Potentials (2402.15921v2)
Abstract: We propose a mask pretraining method for Graph Neural Networks (GNNs) to improve their performance on fitting potential energy surfaces, particularly in water systems. GNNs are pretrained by recovering spatial information related to masked-out atoms from molecules, then transferred and finetuned on atomic forcefields. Through such pretraining, GNNs learn meaningful prior about structural and underlying physical information of molecule systems that are useful for downstream tasks. From comprehensive experiments and ablation studies, we show that the proposed method improves the accuracy and convergence speed compared to GNNs trained from scratch or using other pretraining techniques such as denoising. On the other hand, our pretraining method is suitable for both energy-centric and force-centric GNNs. This approach showcases its potential to enhance the performance and data efficiency of GNNs in fitting molecular force fields.
- Unke, O. T.; Chmiela, S.; Sauceda, H. E.; Gastegger, M.; Poltavsky, I.; Schütt, K. T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. 2021
- Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K.-R. Machine learning of accurate energy-conserving molecular force fields. Science Advances 2017, 3
- Bartók, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J. R.; Csányi, G.; Ceriotti, M. Machine learning unifies the modeling of materials and molecules. Science Advances 2017, 3
- Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. Advances in Neural Information Processing Systems. 2015
- Schütt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela, S.; Tkatchenko, A.; Müller, K.-R. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. 2017
- Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. Proceedings of the 34th International Conference on Machine Learning. 2017; pp 1263–1272
- Klicpera, J.; Groß, J.; Günnemann, S. Directional Message Passing for Molecular Graphs. International Conference on Learning Representations. 2020
- Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; Riley, P. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint arXiv:1802.08219 2018,
- Anderson, B.; Hy, T. S.; Kondor, R. Cormorant: Covariant molecular neural networks. Advances in neural information processing systems 2019, 32
- Jing, B.; Eismann, S.; Suriana, P.; Townshend, R. J. L.; Dror, R. Learning from Protein Structure with Geometric Vector Perceptrons. International Conference on Learning Representations. 2021
- Villar, S.; Hogg, D. W.; Storey-Fisher, K.; Yao, W.; Blum-Smith, B. Scalars are universal: Equivariant machine learning, structured like classical physics. Advances in Neural Information Processing Systems. 2021
- Hu*, W.; Liu*, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for Pre-training Graph Neural Networks. International Conference on Learning Representations. 2020
- Wang, Y.; Wang, J.; Cao, Z.; Farimani, A. B. MolCLR: Molecular Contrastive Learning of Representations via Graph Neural Networks. 2021
- Liu, Y.; Jin, M.; Pan, S.; Zhou, C.; Zheng, Y.; Xia, F.; Yu, P. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge and Data Engineering 2022,
- Krishnan, R.; Rajpurkar, P.; Topol, E. J. Self-supervised learning in medicine and healthcare. Nature Biomedical Engineering 2022, 1–7
- Cao, Z.; Magar, R.; Wang, Y.; Farimani, A. B. MOFormer: Self-Supervised Transformer model for Metal-Organic Framework Property Prediction. arXiv preprint arXiv:2210.14188 2022,
- Zhang, S.; Hu, Z.; Subramonian, A.; Sun, Y. Motif-driven contrastive learning of graph representations. arXiv preprint arXiv:2012.12533 2020,
- Wang, Y.; Magar, R.; Liang, C.; Barati Farimani, A. Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast. Journal of Chemical Information and Modeling 2022,
- Stärk, H.; Beaini, D.; Corso, G.; Tossou, P.; Dallago, C.; Günnemann, S.; Liò, P. 3d infomax improves gnns for molecular property prediction. International Conference on Machine Learning. 2022; pp 20479–20502
- Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; Tang, J. Pre-training Molecular Graph Representation with 3D Geometry. International Conference on Learning Representations. 2022
- Zaidi, S.; Schaarschmidt, M.; Martens, J.; Kim, H.; Teh, Y. W.; Sanchez-Gonzalez, A.; Battaglia, P.; Pascanu, R.; Godwin, J. Pre-training via Denoising for Molecular Property Prediction. arXiv preprint arXiv:2206.00133 2022,
- Liu, S.; Guo, H.; Tang, J. Molecular geometry pretraining with se (3)-invariant denoising distance matching. arXiv preprint arXiv:2206.13602 2022,
- Zhou, G.; Gao, Z.; Ding, Q.; Zheng, H.; Xu, H.; Wei, Z.; Zhang, L.; Ke, G. Uni-Mol: A Universal 3D Molecular Representation Learning Framework. The Eleventh International Conference on Learning Representations. 2023
- Jiang, D.; Zhenxing Wu, C.-Y. H.; Chen, G.; Liao, B.; Wang, Z.; Shen, C.; Cao, D.; Wu, J.; Hou, T. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. Journal of Cheminformatics 2021,
- Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.; Huang, J. Self-Supervised Graph Transformer on Large-Scale Molecular Data. 2020,
- Satorras, V. G.; Hoogeboom, E.; Welling, M. E (n) equivariant graph neural networks. International conference on machine learning. 2021; pp 9323–9332
- Kumar, K.; Vantassel, J. GNS: A generalizable Graph Neural Network-based simulator for particulate and fluid modeling. 2022,
- Hu, W.; Shuaibi, M.; Das, A.; Goyal, S.; Sriram, A.; Leskovec, J.; Parikh, D.; Zitnick, C. L. ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations. 2021
- Raghunathan Ramakrishnan, M. R., Pavlo O. Dral; von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data 2014,
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019
- Xie, T.; Fu, X.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. S. Crystal Diffusion Variational Autoencoder for Periodic Material Generation. International Conference on Learning Representations. 2022
- Arts, M.; Satorras, V. G.; Huang, C.-W.; Zuegner, D.; Federici, M.; Clementi, C.; Noé, F.; Pinsler, R.; Berg, R. v. d. Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics. arXiv preprint arXiv:2302.00600 2023,
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. 2019,
- Zehua Zhang (16 papers)
- Zijie Li (14 papers)
- Amir Barati Farimani (121 papers)