Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

An elementary proof of the chromatic Smith fixed point theorem (2303.02022v1)

Published 3 Mar 2023 in math.AT

Abstract: A recent theorem by T. Barthel, M. Hausmann, N. Naumann, T. Nikolaus, J. Noel, and N. Stapleton says that if A is a finite abelian p-group of rank r, then any finite A-space X which is acyclic in the nth Morava K-theory with n at least r will have its subspace F of fixed points acyclic in the (n-r)th Morava K-theory. This is a chromatic homotopy version of P.A.Smith's classical theorem that if X is acyclic in mod p homology, then so is F. The main purpose of this paper is to give an elementary proof of this new theorem that uses minimal background, and follows, as much as possible, the reasoning in standard proofs of the classical theorem. We also give a new fixed point theorem for finite dimensional, but possibly infinite, A-CW complexes, which suggests some open problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.