Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Introduction to Higher-Form Symmetries (2303.01817v2)

Published 3 Mar 2023 in hep-th and cond-mat.str-el

Abstract: These notes are intended to be a pedagogical introduction to higher-form symmetries, which are symmetries whose charged objects are extended operators supported on lines, surfaces, and etc. This subject has been one of the most popular and effervescent topics of theoretical physics in recent years. Gauge theories are central in the study of higher-form symmetries, with Wilson and 't Hooft operators corresponding to the charged objects. Along these notes, we discuss in detail some basic aspects, including Abelian Maxwell and Chern-Simons theories, and $SU(N)$ non-Abelian gauge theories. We also discuss spontaneous breaking of higher-form symmetries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. G. Alford and J. March-Russell, Discrete gauge theories, Int. J. Mod. Phys. B 5, 2641 (1991).
  2. M. G. Alford and J. March-Russell, New order parameters for nonAbelian gauge theories, Nucl. Phys. B 369, 276 (1992).
  3. M. Bucher, K.-M. Lee, and J. Preskill, On detecting discrete Cheshire charge, Nucl. Phys. B 386, 27 (1992), arXiv:hep-th/9112040 .
  4. T. Pantev and E. Sharpe, Notes on gauging noneffective group actions,   (2005), arXiv:hep-th/0502027 .
  5. T. Pantev and E. Sharpe, String compactifications on Calabi-Yau stacks, Nucl. Phys. B 733, 233 (2006a), arXiv:hep-th/0502044 .
  6. T. Pantev and E. Sharpe, GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math. Phys. 10, 77 (2006b), arXiv:hep-th/0502053 .
  7. Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Annals of Physics 324, 977 (2009).
  8. J. McGreevy, Generalized Symmetries in Condensed Matter,   (2022), arXiv:2204.03045 [cond-mat.str-el] .
  9. E. Sharpe, Notes on generalized global symmetries in QFT, Fortsch. Phys. 63, 659 (2015), arXiv:1508.04770 [hep-th] .
  10. S. Schafer-Nameki, ICTP Lectures on (Non-)Invertible Generalized Symmetries,   (2023), arXiv:2305.18296 [hep-th] .
  11. T. D. Brennan and S. Hong, Introduction to Generalized Global Symmetries in QFT and Particle Physics,   (2023), arXiv:2306.00912 [hep-ph] .
  12. C. Chamon, Quantum glassiness in strongly correlated clean systems: An example of topological overprotection, Physical Review Letters 94, 10.1103/physrevlett.94.040402 (2005).
  13. J. Haah, Local stabilizer codes in three dimensions without string logical operators, Physical Review A 83, 10.1103/physreva.83.042330 (2011).
  14. R. M. Nandkishore and M. Hermele, Fractons, Ann. Rev. Condensed Matter Phys. 10, 295 (2019), arXiv:1803.11196 [cond-mat.str-el] .
  15. M. Pretko, X. Chen, and Y. You, Fracton Phases of Matter, Int. J. Mod. Phys. A 35, 2030003 (2020), arXiv:2001.01722 [cond-mat.str-el] .
  16. Y. Choi, H. T. Lam, and S.-H. Shao, Noninvertible Global Symmetries in the Standard Model, Phys. Rev. Lett. 129, 161601 (2022), arXiv:2205.05086 [hep-th] .
  17. J. Wang, Z. Wan, and Y.-Z. You, Cobordism and deformation class of the standard model, Phys. Rev. D 106, L041701 (2022), arXiv:2112.14765 [hep-th] .
  18. P. Putrov and J. Wang, Categorical Symmetry of the Standard Model from Gravitational Anomaly,   (2023), arXiv:2302.14862 [hep-th] .
  19. E. Lake, Higher-form symmetries and spontaneous symmetry breaking,   (2018), arXiv:1802.07747 [hep-th] .
  20. D. M. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys. 6, 006 (2019), arXiv:1802.09512 [hep-th] .
  21. Z. Wan, J. Wang, and Y. Zheng, Quantum 4d Yang-Mills Theory and Time-Reversal Symmetric 5d Higher-Gauge Topological Field Theory, Phys. Rev. D 100, 085012 (2019), arXiv:1904.00994 [hep-th] .
  22. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, 2005).
  23. R. Arouca, A. Cappelli, and T. H. Hansson, Quantum Field Theory Anomalies in Condensed Matter Physics, SciPost Phys. Lect. Notes 62, 1 (2022), arXiv:2204.02158 [cond-mat.str-el] .
  24. A. J. Beekman, L. Rademaker, and J. van Wezel, An Introduction to Spontaneous Symmetry Breaking, SciPost Phys. Lect. Notes 11, 1 (2019), arXiv:1909.01820 [hep-th] .
  25. A. M. Polyakov, Gauge Fields and Strings, Vol. 3 (1987).
  26. A. M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120, 429 (1977).
  27. D. Tong, Lectures on the Quantum Hall Effect (2016) arXiv:1606.06687 [hep-th] .
  28. C. Turner, Dualities in 2+1 Dimensions, PoS Modave2018, 001 (2019), arXiv:1905.12656 [hep-th] .
  29. E. Witten, Three lectures on topological phases of matter, Riv. Nuovo Cim. 39, 313 (2016), arXiv:1510.07698 [cond-mat.mes-hall] .
  30. N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP 2016, 12C101 (2016), arXiv:1602.04251 [cond-mat.str-el] .
  31. X.-G. Wen, Theory of the Edge States in Fractional Quantum Hall Effects, International Journal of Modern Physics B 6, 1711 (1992).
  32. X.-G. Wen, Topological orders and edge excitations in fractional quantum hall states, Advances in Physics 44, 405 (1995).
  33. A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6, 031043 (2016), arXiv:1606.01893 [hep-th] .
  34. J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05, 159, arXiv:1606.01912 [hep-th] .
  35. J. von Delft and H. Schoeller, Bosonization for beginners: Refermionization for experts, Annalen Phys. 7, 225 (1998), arXiv:cond-mat/9805275 .
  36. D. Senechal, An Introduction to bosonization, in CRM Workshop on Theoretical Methods for Strongly Correlated Fermions (1999) arXiv:cond-mat/9908262 .
  37. P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics (Springer-Verlag, New York, 1997).
  38. R. Floreanini and R. Jackiw, Selfdual Fields as Charge Density Solitons, Phys. Rev. Lett. 59, 1873 (1987).
  39. Y. Frishman and J. Sonnenschein, Non-perturbative field theory: From two-dimensional conformal field theory to QCD in four dimensions, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2014).
  40. M. Srednicki, Quantum field theory (Cambridge University Press, 2007).
  41. V. P. Nair, Quantum field theory: A modern perspective (Springer Science & Business Media, 2005).
  42. P. Goddard, J. Nuyts, and D. I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125, 1 (1977).
  43. D. Tong, Gauge Theory,   (2018).
  44. H. Georgi, Lie algebras in particle physics, 2nd ed., Vol. 54 (Perseus Books, Reading, MA, 1999).
  45. Y. Makeenko, A Brief Introduction to Wilson Loops and Large N, Phys. Atom. Nucl. 73, 878 (2010), arXiv:0906.4487 [hep-th] .
  46. K. Slagle and Y. B. Kim, Quantum Field Theory of X-Cube Fracton Topological Order and Robust Degeneracy from Geometry, Phys. Rev. B 96, 195139 (2017), arXiv:1708.04619 [cond-mat.str-el] .
  47. D. Bulmash and M. Barkeshli, The Higgs Mechanism in Higher-Rank Symmetric U⁢(1)𝑈1U(1)italic_U ( 1 ) Gauge Theories, Phys. Rev. B 97, 235112 (2018), arXiv:1802.10099 [cond-mat.str-el] .
  48. M. Pretko, The Fracton Gauge Principle, Phys. Rev. B 98, 115134 (2018), arXiv:1807.11479 [cond-mat.str-el] .
  49. A. Gromov, Towards classification of Fracton phases: the multipole algebra, Phys. Rev. X 9, 031035 (2019), arXiv:1812.05104 [cond-mat.str-el] .
  50. N. Seiberg, Field Theories With a Vector Global Symmetry, SciPost Phys. 8, 050 (2020), arXiv:1909.10544 [cond-mat.str-el] .
  51. K. Slagle, Foliated Quantum Field Theory of Fracton Order, Phys. Rev. Lett. 126, 101603 (2021), arXiv:2008.03852 [hep-th] .
  52. W. B. Fontana, P. R. S. Gomes, and C. Chamon, Lattice Clifford fractons and their Chern-Simons-like theory, SciPost Phys. Core 4, 012 (2021), arXiv:2006.10071 [cond-mat.str-el] .
  53. X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019), arXiv:1812.02517 [cond-mat.str-el] .
  54. N. Iqbal and J. McGreevy, Mean string field theory: Landau-Ginzburg theory for 1-form symmetries, SciPost Phys. 13, 114 (2022), arXiv:2106.12610 [hep-th] .
  55. R. A. Bertlmann, Anomalies in quantum field theory, Vol. 91 (Oxford university press, 2000).
Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.