Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sharp spectral stability for a class of singularly perturbed pseudo-differential operators (2303.00112v2)

Published 28 Feb 2023 in math-ph and math.MP

Abstract: Let $a(x,\xi)$ be a real H\"ormander symbol of the type $S_{0,0}0(\mathbb{R}{d}\times \mathbb{R}d)$, let $F$ be a smooth function with all its derivatives globally bounded, and let $K_\delta$ be the self-adjoint Weyl quantization of the perturbed symbols $a(x+F(\delta\, x),\xi)$, where $|\delta|\leq 1$. First, we prove that the Hausdorff distance between the spectra of $K_\delta$ and $K_{0}$ is bounded by $\sqrt{|\delta|}$, and we give examples where spectral gaps of this magnitude can open when $\delta\neq 0$. Second, we show that the distance between the spectral edges of $K_\delta$ and $K_0$ (and also the edges of the inner spectral gaps, as long as they remain open at $\delta=0$) are of order $|\delta|$, and give a precise dependence on the width of the spectral gaps.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.