2000 character limit reached
Modern Bayesian Experimental Design (2302.14545v2)
Published 28 Feb 2023 in stat.ML, cs.AI, cs.LG, and stat.CO
Abstract: Bayesian experimental design (BED) provides a powerful and general framework for optimizing the design of experiments. However, its deployment often poses substantial computational challenges that can undermine its practical use. In this review, we outline how recent advances have transformed our ability to overcome these challenges and thus utilize BED effectively, before discussing some key areas for future development in the field.
- {barticle}[author] \bauthor\bsnmAtkinson, \bfnmAnthony C\binitsA. C. and \bauthor\bsnmFedorov, \bfnmValerii\binitsV. (\byear1975). \btitleThe design of experiments for discriminating between two rival models. \bjournalBiometrika. \endbibitem
- {barticle}[author] \bauthor\bsnmBarber, \bfnmDavid\binitsD. and \bauthor\bsnmAgakov, \bfnmFelix\binitsF. (\byear2003). \btitleThe IM algorithm: a variational approach to information maximization. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmBarnard, \bfnmGeorge A\binitsG. A., \bauthor\bsnmJenkins, \bfnmG M\binitsG. M. and \bauthor\bsnmWinsten, \bfnmCB\binitsC. (\byear1962). \btitleLikelihood inference and time series. \bjournalJournal of the Royal Statistical Society: Series A (General). \endbibitem
- {barticle}[author] \bauthor\bsnmBerger, \bfnmJames O\binitsJ. O. and \bauthor\bsnmWolpert, \bfnmRobert L\binitsR. L. (\byear1988). \btitleThe likelihood principle. \bjournalIMS Lecture Notes—Monograph Series. \endbibitem
- {barticle}[author] \bauthor\bsnmBernardo, \bfnmJosé M\binitsJ. M. (\byear1979). \btitleExpected information as expected utility. \bjournalThe Annals of Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmBhanot, \bfnmGyan\binitsG. and \bauthor\bsnmKennedy, \bfnmAnthony D\binitsA. D. (\byear1985). \btitleBosonic lattice gauge theory with noise. \bjournalPhysics Letters B. \endbibitem
- {barticle}[author] \bauthor\bsnmBlei, \bfnmDavid M\binitsD. M., \bauthor\bsnmKucukelbir, \bfnmAlp\binitsA. and \bauthor\bsnmMcAuliffe, \bfnmJon D\binitsJ. D. (\byear2017). \btitleVariational inference: a review for statisticians. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bsnmBorth, \bfnmDavid M\binitsD. M. (\byear1975). \btitleA total entropy criterion for the dual problem of model discrimination and parameter estimation. \bjournalJournal of the Royal Statistical Society: Series B (Methodological). \endbibitem
- {btechreport}[author] \bauthor\bsnmBox, \bfnmGeorge EP\binitsG. E. (\byear1982). \btitleChoice of response surface design and alphabetic optimality. \btypeTechnical Report, \bpublisherUniversity of Wisconsin—Madison. \endbibitem
- {barticle}[author] \bauthor\bsnmBrynjarsdóttir, \bfnmJennỳ\binitsJ. and \bauthor\bsnmO’Hagan, \bfnmAnthony\binitsA. (\byear2014). \btitleLearning about physical parameters: the importance of model discrepancy. \bjournalInverse Problems. \endbibitem
- {barticle}[author] \bauthor\bsnmBurda, \bfnmYuri\binitsY., \bauthor\bsnmGrosse, \bfnmRoger\binitsR. and \bauthor\bsnmSalakhutdinov, \bfnmRuslan\binitsR. (\byear2015). \btitleImportance weighted autoencoders. \bjournalarXiv preprint arXiv:1509.00519. \endbibitem
- {barticle}[author] \bauthor\bsnmCarlin, \bfnmBradley P\binitsB. P., \bauthor\bsnmKadane, \bfnmJoseph B\binitsJ. B. and \bauthor\bsnmGelfand, \bfnmAlan E\binitsA. E. (\byear1998). \btitleApproaches for optimal sequential decision analysis in clinical trials. \bjournalBiometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmChaloner, \bfnmKathryn\binitsK. and \bauthor\bsnmLarntz, \bfnmKinley\binitsK. (\byear1989). \btitleOptimal Bayesian design applied to logistic regression experiments. \bjournalJournal of Statistical Planning and Inference. \endbibitem
- {barticle}[author] \bauthor\bsnmChaloner, \bfnmKathryn\binitsK. and \bauthor\bsnmVerdinelli, \bfnmIsabella\binitsI. (\byear1995). \btitleBayesian experimental design: a review. \bjournalStatistical Science. \endbibitem
- {barticle}[author] \bauthor\bsnmCheng, \bfnmYi\binitsY. and \bauthor\bsnmShen, \bfnmYu\binitsY. (\byear2005). \btitleBayesian adaptive designs for clinical trials. \bjournalBiometrika. \endbibitem
- {btechreport}[author] \bauthor\bsnmClyde, \bfnmMerlise A\binitsM. A., \bauthor\bsnmMüller, \bfnmPeter\binitsP. and \bauthor\bsnmParmigiani, \bfnmGiovanni\binitsG. (\byear1996). \btitleExploring expected utility surfaces by Markov chains. \btypeTechnical Report. \endbibitem
- {barticle}[author] \bauthor\bsnmCook, \bfnmAlex R\binitsA. R., \bauthor\bsnmGibson, \bfnmGavin J\binitsG. J. and \bauthor\bsnmGilligan, \bfnmChristopher A\binitsC. A. (\byear2008). \btitleOptimal observation times in experimental epidemic processes. \bjournalBiometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmCovey-Crump, \bfnmPAK\binitsP. and \bauthor\bsnmSilvey, \bfnmSD\binitsS. (\byear1970). \btitleOptimal regression designs with previous observations. \bjournalBiometrika. \endbibitem
- {barticle}[author] \bauthor\bsnmDehideniya, \bfnmMahasen B.\binitsM. B., \bauthor\bsnmDrovandi, \bfnmChristopher C.\binitsC. C. and \bauthor\bsnmMcGree, \bfnmJames M.\binitsJ. M. (\byear2018). \btitleOptimal Bayesian design for discriminating between models with intractable likelihoods in epidemiology. \bjournalComputational Statistics & Data Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmDrovandi, \bfnmChristopher C\binitsC. C. and \bauthor\bsnmPettitt, \bfnmAnthony N\binitsA. N. (\byear2013). \btitleBayesian experimental design for models with intractable likelihoods. \bjournalBiometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmDushenko, \bfnmSergey\binitsS., \bauthor\bsnmAmbal, \bfnmKapildeb\binitsK. and \bauthor\bsnmMcMichael, \bfnmRobert D\binitsR. D. (\byear2020). \btitleSequential Bayesian experiment design for optically detected magnetic resonance of nitrogen-vacancy centers. \bjournalPhysical Review Applied. \endbibitem
- {barticle}[author] \bauthor\bsnmElfving, \bfnmGustav\binitsG. (\byear1952). \btitleOptimum allocation in linear regression theory. \bjournalThe Annals of Mathematical Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmEtzioni, \bfnmRuth\binitsR. and \bauthor\bsnmKadane, \bfnmJoseph B\binitsJ. B. (\byear1993). \btitleOptimal experimental design for another’s analysis. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bsnmFarquhar, \bfnmSebastian\binitsS., \bauthor\bsnmGal, \bfnmYarin\binitsY. and \bauthor\bsnmRainforth, \bfnmTom\binitsT. (\byear2021). \btitleOn statistical bias in active learning: how and when to fix it. \bjournalInternational Conference on Learning Representations. \endbibitem
- {barticle}[author] \bauthor\bsnmFirth, \bfnmD\binitsD. and \bauthor\bsnmHinde, \bfnmJ P\binitsJ. P. (\byear1997). \btitleParameter neutral optimum design for non-linear models. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology). \endbibitem
- {barticle}[author] \bauthor\bsnmFisher, \bfnmRonald A\binitsR. A. (\byear1926). \btitleThe arrangement of field experiments. \bjournalJournal of the Ministry of Agriculture. \endbibitem
- {barticle}[author] \bauthor\bsnmFisher, \bfnmRonald A\binitsR. A. (\byear1936). \btitleThe design of experiments. \bjournalBritish Medical Journal. \endbibitem
- {bmisc}[author] \bauthor\bsnmUS Food and Drug Administration (\byear2019). \btitleAdaptive designs for clinical trials of drugs and biologics: guidance for industry. \endbibitem
- {barticle}[author] \bauthor\bsnmFudenberg, \bfnmDrew\binitsD., \bauthor\bsnmRomanyuk, \bfnmGleb\binitsG. and \bauthor\bsnmStrack, \bfnmPhilipp\binitsP. (\byear2017). \btitleActive learning with a misspecified prior. \bjournalTheoretical Economics. \endbibitem
- {barticle}[author] \bauthor\bsnmGal, \bfnmYarin\binitsY., \bauthor\bsnmIslam, \bfnmRiashat\binitsR. and \bauthor\bsnmGhahramani, \bfnmZoubin\binitsZ. (\byear2017). \btitleDeep Bayesian active learning with image data. \bjournalInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmGelman, \bfnmAndrew\binitsA. (\byear2008). \btitleObjections to Bayesian statistics. \bjournalBayesian Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmGiles, \bfnmMichael B\binitsM. B. (\byear2008). \btitleMultilevel Monte Carlo path simulation. \bjournalOperations Research. \endbibitem
- {barticle}[author] \bauthor\bsnmGiles, \bfnmMichael B\binitsM. B. and \bauthor\bsnmSzpruch, \bfnmLukasz\binitsL. (\byear2014). \btitleAntithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation. \bjournalThe Annals of Applied Probability. \endbibitem
- {barticle}[author] \bauthor\bsnmGillespie, \bfnmColin S\binitsC. S. and \bauthor\bsnmBoys, \bfnmRichard J\binitsR. J. (\byear2019). \btitleEfficient construction of Bayes optimal designs for stochastic process models. \bjournalStatistics and Computing. \endbibitem
- {barticle}[author] \bauthor\bsnmGo, \bfnmJinwoo\binitsJ. and \bauthor\bsnmIsaac, \bfnmTobin\binitsT. (\byear2022). \btitleRobust expected information gain for optimal Bayesian experimental design using ambiguity sets. \bjournalConference on Uncertainty in Artificial Intelligence. \endbibitem
- {barticle}[author] \bauthor\bsnmGoda, \bfnmTakashi\binitsT., \bauthor\bsnmHironaka, \bfnmTomohiko\binitsT. and \bauthor\bsnmIwamoto, \bfnmTakeru\binitsT. (\byear2020). \btitleMultilevel Monte Carlo estimation of expected information gains. \bjournalStochastic Analysis and Applications. \endbibitem
- {barticle}[author] \bauthor\bsnmGolovin, \bfnmDaniel\binitsD., \bauthor\bsnmKrause, \bfnmAndreas\binitsA. and \bauthor\bsnmRay, \bfnmDebajyoti\binitsD. (\byear2010). \btitleNear-optimal Bayesian active learning with noisy observations. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmGonzález, \bfnmJavier\binitsJ., \bauthor\bsnmOsborne, \bfnmMichael\binitsM. and \bauthor\bsnmLawrence, \bfnmNeil\binitsN. (\byear2016). \btitleGLASSES: relieving the myopia of Bayesian optimisation. \bjournalInternational Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. and \bauthor\bparticlevan \bsnmOmmen, \bfnmThijs\binitsT. (\byear2017). \btitleInconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. \bjournalBayesian Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmGuez, \bfnmArthur\binitsA., \bauthor\bsnmSilver, \bfnmDavid\binitsD. and \bauthor\bsnmDayan, \bfnmPeter\binitsP. (\byear2012). \btitleEfficient Bayes-adaptive reinforcement learning using sample-based search. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmHainy, \bfnmMarkus\binitsM., \bauthor\bsnmDrovandi, \bfnmChristopher C.\binitsC. C. and \bauthor\bsnmMcGree, \bfnmJames M.\binitsJ. M. (\byear2016). \btitleLikelihood-free extensions for Bayesian sequentially designed experiments. \bjournalmODa 11—Advances in Model-Oriented Design and Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmHan, \bfnmCong\binitsC. and \bauthor\bsnmChaloner, \bfnmKathryn\binitsK. (\byear2004). \btitleBayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics. \bjournalBiometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmHennig, \bfnmPhilipp\binitsP. and \bauthor\bsnmSchuler, \bfnmChristian J\binitsC. J. (\byear2012). \btitleEntropy search for information-efficient global optimization. \bjournalJournal of Machine Learning Research. \endbibitem
- {barticle}[author] \bauthor\bsnmHuan, \bfnmXun\binitsX. and \bauthor\bsnmMarzouk, \bfnmYoussef\binitsY. (\byear2014). \btitleGradient-based stochastic optimization methods in Bayesian experimental design. \bjournalInternational Journal for Uncertainty Quantification. \endbibitem
- {barticle}[author] \bauthor\bsnmHuan, \bfnmXun\binitsX. and \bauthor\bsnmMarzouk, \bfnmYoussef M\binitsY. M. (\byear2013). \btitleSimulation-based optimal Bayesian experimental design for nonlinear systems. \bjournalJournal of Computational Physics. \endbibitem
- {barticle}[author] \bauthor\bsnmHuan, \bfnmXun\binitsX. and \bauthor\bsnmMarzouk, \bfnmYoussef M\binitsY. M. (\byear2016). \btitleSequential Bayesian optimal experimental design via approximate dynamic programming. \bjournalarXiv preprint arXiv:1604.08320. \endbibitem
- {barticle}[author] \bauthor\bsnmHughes-Oliver, \bfnmJacqueline M\binitsJ. M. (\byear1998). \btitleOptimal designs for nonlinear models with correlated errors. \bjournalIMS Lecture Notes—Monograph Series. \endbibitem
- {barticle}[author] \bauthor\bsnmJörke, \bfnmMatthew\binitsM., \bauthor\bsnmLee, \bfnmJonathan\binitsJ. and \bauthor\bsnmBrunskill, \bfnmEmma\binitsE. (\byear2022). \btitleSimple regret minimization for contextual bandits using Bayesian optimal experimental design. \bjournalICML Workshop on “Adaptive Experimental Design and Active Learning in the Real World”. \endbibitem
- {barticle}[author] \bauthor\bsnmKasy, \bfnmMaximilian\binitsM. and \bauthor\bsnmSautmann, \bfnmAnja\binitsA. (\byear2021). \btitleAdaptive treatment assignment in experiments for policy choice. \bjournalEconometrica. \endbibitem
- {barticle}[author] \bauthor\bsnmKennamer, \bfnmNoble\binitsN., \bauthor\bsnmWalton, \bfnmSteven\binitsS. and \bauthor\bsnmIhler, \bfnmAlexander\binitsA. (\byear2023). \btitleDesign amortization for Bayesian optimal experimental design. \bjournalAAAI Conference on Artificial Intelligence. \endbibitem
- {barticle}[author] \bauthor\bsnmKennedy, \bfnmAnthony D\binitsA. D. and \bauthor\bsnmKuti, \bfnmJulius\binitsJ. (\byear1985). \btitleNoise without noise: a new Monte Carlo method. \bjournalPhysical Review Letters. \endbibitem
- {barticle}[author] \bauthor\bsnmKennedy, \bfnmMarc C\binitsM. C. and \bauthor\bsnmO’Hagan, \bfnmAnthony\binitsA. (\byear2001). \btitleBayesian calibration of computer models. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology). \endbibitem
- {barticle}[author] \bauthor\bsnmKingma, \bfnmDiederik P\binitsD. P. and \bauthor\bsnmBa, \bfnmJimmy\binitsJ. (\byear2015). \btitleAdam: a method for stochastic optimization. \bjournalInternational Conference on Learning Representations. \endbibitem
- {barticle}[author] \bauthor\bsnmKingma, \bfnmDiederik P\binitsD. P. and \bauthor\bsnmWelling, \bfnmMax\binitsM. (\byear2014). \btitleAuto-encoding variational Bayes. \bjournalInternational Conference on Learning Representations. \endbibitem
- {barticle}[author] \bauthor\bsnmKirsch, \bfnmAndreas\binitsA., \bauthor\bsnmvan Amersfoort, \bfnmJoost\binitsJ. and \bauthor\bsnmGal, \bfnmYarin\binitsY. (\byear2019). \btitleBatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmKleijn, \bfnmBas JK\binitsB. J. and \bauthor\bparticlevan der \bsnmVaart, \bfnmAad W\binitsA. W. (\byear2012). \btitleThe Bernstein-von-Mises theorem under misspecification. \bjournalElectronic Journal of Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmKleinegesse, \bfnmS.\binitsS. and \bauthor\bsnmGutmann, \bfnmM. U.\binitsM. U. (\byear2019). \btitleEfficient Bayesian experimental design for implicit models. \bjournalInternational Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmKleinegesse, \bfnmSteven\binitsS. and \bauthor\bsnmGutmann, \bfnmMichael\binitsM. (\byear2020). \btitleBayesian experimental design for implicit models by mutual information neural estimation. \bjournalInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmKleinegesse, \bfnmSteven\binitsS. and \bauthor\bsnmGutmann, \bfnmMichael U.\binitsM. U. (\byear2021). \btitleGradient-based Bayesian experimental design for implicit models using mutual information lower bounds. \bjournalarXiv preprint arXiv:2105.04379. \endbibitem
- {barticle}[author] \bauthor\bsnmKuck, \bfnmHendrik\binitsH., \bauthor\bparticlede \bsnmFreitas, \bfnmNando\binitsN. and \bauthor\bsnmDoucet, \bfnmArnaud\binitsA. (\byear2006). \btitleSMC samplers for Bayesian optimal nonlinear design. \bjournalIEEE Nonlinear Statistical Signal Processing Workshop. \endbibitem
- {barticle}[author] \bauthor\bsnmKuhfeld, \bfnmWarren F\binitsW. F., \bauthor\bsnmTobias, \bfnmRandall D\binitsR. D. and \bauthor\bsnmGarratt, \bfnmMark\binitsM. (\byear1994). \btitleEfficient experimental design with marketing research applications. \bjournalJournal of Marketing Research. \endbibitem
- {barticle}[author] \bauthor\bsnmLewi, \bfnmJeremy\binitsJ., \bauthor\bsnmButera, \bfnmRobert\binitsR. and \bauthor\bsnmPaninski, \bfnmLiam\binitsL. (\byear2009). \btitleSequential optimal design of neurophysiology experiments. \bjournalNeural Computation. \endbibitem
- {barticle}[author] \bauthor\bsnmLindley, \bfnmDennis V\binitsD. V. (\byear1956). \btitleOn a measure of the information provided by an experiment. \bjournalThe Annals of Mathematical Statistics. \endbibitem
- {bbook}[author] \bauthor\bsnmLindley, \bfnmDennis V\binitsD. V. (\byear1972). \btitleBayesian Statistics, a Review. \bpublisherSociety for Industrial and Applied Mathematics. \endbibitem
- {barticle}[author] \bauthor\bsnmLong, \bfnmQuan\binitsQ. (\byear2022). \btitleMultimodal information gain in Bayesian design of experiments. \bjournalComputational Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmLoredo, \bfnmThomas J\binitsT. J. (\byear2004). \btitleBayesian adaptive exploration. \bjournalAIP Conference Proceedings. \endbibitem
- {barticle}[author] \bauthor\bsnmMacKay, \bfnmDavid JC\binitsD. J. (\byear1992). \btitleInformation-based objective functions for active data selection. \bjournalNeural Computation. \endbibitem
- {barticle}[author] \bauthor\bsnmMargatina, \bfnmKaterina\binitsK., \bauthor\bsnmBarrault, \bfnmLoïc\binitsL. and \bauthor\bsnmAletras, \bfnmNikolaos\binitsN. (\byear2021). \btitleBayesian active learning with pretrained language models. \bjournalarXiv preprint arXiv:2104.08320. \endbibitem
- {barticle}[author] \bauthor\bsnmMcLeish, \bfnmDon\binitsD. (\byear2011). \btitleA general method for debiasing a Monte Carlo estimator. \bjournalMonte Carlo Methods and Applications. \endbibitem
- {barticle}[author] \bauthor\bsnmMeyer, \bfnmRuth K\binitsR. K. and \bauthor\bsnmNachtsheim, \bfnmChristopher J\binitsC. J. (\byear1995). \btitleThe coordinate-exchange algorithm for constructing exact optimal experimental designs. \bjournalTechnometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmMüller, \bfnmPeter\binitsP. (\byear2005). \btitleSimulation based optimal design. \bjournalHandbook of Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmMüller, \bfnmPeter\binitsP., \bauthor\bsnmSansó, \bfnmBruno\binitsB. and \bauthor\bsnmDe Iorio, \bfnmMaria\binitsM. (\byear2004). \btitleOptimal Bayesian design by inhomogeneous Markov chain simulation. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bsnmMyung, \bfnmJay I\binitsJ. I., \bauthor\bsnmCavagnaro, \bfnmDaniel R\binitsD. R. and \bauthor\bsnmPitt, \bfnmMark A\binitsM. A. (\byear2013). \btitleA tutorial on adaptive design optimization. \bjournalJournal of Mathematical Psychology. \endbibitem
- {barticle}[author] \bauthor\bsnmNeiswanger, \bfnmWillie\binitsW., \bauthor\bsnmWang, \bfnmKe Alexander\binitsK. A. and \bauthor\bsnmErmon, \bfnmStefano\binitsS. (\byear2021). \btitleBayesian algorithm execution: estimating computable properties of black-box functions using mutual information. \bjournalInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmNguyen, \bfnmXuanlong\binitsX., \bauthor\bsnmWainwright, \bfnmMartin J.\binitsM. J. and \bauthor\bsnmJordan, \bfnmMichael I.\binitsM. I. (\byear2010). \btitleEstimating divergence functionals and the likelihood ratio by convex risk minimization. \bjournalIEEE Transactions on Information Theory. \endbibitem
- {barticle}[author] \bauthor\bsnmOverstall, \bfnmAntony\binitsA. and \bauthor\bsnmMcGree, \bfnmJames\binitsJ. (\byear2020). \btitleBayesian design of experiments for intractable likelihood models using coupled auxiliary models and multivariate emulation. \bjournalBayesian Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmOverstall, \bfnmAntony\binitsA. and \bauthor\bsnmMcGree, \bfnmJames\binitsJ. (\byear2021). \btitleBayesian decision-theoretic design of experiments under an alternative model. \bjournalBayesian Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmOverstall, \bfnmAntony M\binitsA. M. (\byear2022). \btitleProperties of Fisher information gain for Bayesian design of experiments. \bjournalJournal of Statistical Planning and Inference. \endbibitem
- {barticle}[author] \bauthor\bsnmOverstall, \bfnmAntony M\binitsA. M. and \bauthor\bsnmWoods, \bfnmDavid C\binitsD. C. (\byear2017). \btitleBayesian design of experiments using approximate coordinate exchange. \bjournalTechnometrics. \endbibitem
- {barticle}[author] \bauthor\bsnmPacheco, \bfnmJason\binitsJ. and \bauthor\bsnmFisher, \bfnmJohn\binitsJ. (\byear2019). \btitleVariational information planning for sequential decision making. \bjournalInternational Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmPaninski, \bfnmLiam\binitsL. (\byear2005). \btitleAsymptotic theory of information-theoretic experimental design. \bjournalNeural Computation. \endbibitem
- {barticle}[author] \bauthor\bsnmPapadimitriou, \bfnmCostas\binitsC. (\byear2004). \btitleOptimal sensor placement methodology for parametric identification of structural systems. \bjournalJournal of Sound and Vibration. \endbibitem
- {barticle}[author] \bauthor\bsnmPrangle, \bfnmDennis\binitsD., \bauthor\bsnmHarbisher, \bfnmSophie\binitsS. and \bauthor\bsnmGillespie, \bfnmColin S\binitsC. S. (\byear2022). \btitleBayesian experimental design without posterior calculations: an adversarial approach. \bjournalBayesian Analysis. \endbibitem
- {barticle}[author] \bauthor\bsnmRezende, \bfnmDanilo Jimenez\binitsD. J., \bauthor\bsnmMohamed, \bfnmShakir\binitsS. and \bauthor\bsnmWierstra, \bfnmDaan\binitsD. (\byear2014). \btitleStochastic backpropagation and approximate inference in deep generative models. \bjournalInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmRhee, \bfnmChang-han\binitsC.-h. and \bauthor\bsnmGlynn, \bfnmPeter W\binitsP. W. (\byear2015). \btitleUnbiased estimation with square root convergence for SDE models. \bjournalOperations Research. \endbibitem
- {barticle}[author] \bauthor\bsnmRobbins, \bfnmHerbert\binitsH. and \bauthor\bsnmMonro, \bfnmSutton\binitsS. (\byear1951). \btitleA stochastic approximation method. \bjournalThe Annals of Mathematical Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmRoss, \bfnmStephane\binitsS., \bauthor\bsnmChaib-draa, \bfnmBrahim\binitsB. and \bauthor\bsnmPineau, \bfnmJoelle\binitsJ. (\byear2007). \btitleBayes-adaptive POMDPs. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmRyan, \bfnmElizabeth G\binitsE. G., \bauthor\bsnmDrovandi, \bfnmChristopher C\binitsC. C. and \bauthor\bsnmPettitt, \bfnmAnthony N\binitsA. N. (\byear2015). \btitleFully Bayesian experimental design for pharmacokinetic studies. \bjournalEntropy. \endbibitem
- {barticle}[author] \bauthor\bsnmRyan, \bfnmKenneth J\binitsK. J. (\byear2003). \btitleEstimating expected information gains for experimental designs with application to the random fatigue-limit model. \bjournalJournal of Computational and Graphical Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmRyan, \bfnmThomas P\binitsT. P. and \bauthor\bsnmMorgan, \bfnmJP\binitsJ. (\byear2007). \btitleModern experimental design. \bjournalJournal of Statistical Theory and Practice. \endbibitem
- {barticle}[author] \bauthor\bsnmSebastiani, \bfnmPaola\binitsP. and \bauthor\bsnmWynn, \bfnmHenry P\binitsH. P. (\byear2000). \btitleMaximum entropy sampling and optimal Bayesian experimental design. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology). \endbibitem
- {btechreport}[author] \bauthor\bsnmSettles, \bfnmBurr\binitsB. (\byear2009). \btitleActive learning literature survey. \btypeTechnical Report, \bpublisherUniversity of Wisconsin—Madison. \endbibitem
- {barticle}[author] \bauthor\bsnmShannon, \bfnmClaude Elwood\binitsC. E. (\byear1948). \btitleA mathematical theory of communication. \bjournalThe Bell System Technical Journal. \endbibitem
- {barticle}[author] \bauthor\bsnmShen, \bfnmWanggang\binitsW. and \bauthor\bsnmHuan, \bfnmXun\binitsX. (\byear2023). \btitleBayesian sequential optimal experimental design for nonlinear models using policy gradient reinforcement learning. \bjournalComputer Methods in Applied Mechanics and Engineering. \endbibitem
- {barticle}[author] \bauthor\bsnmSiddhant, \bfnmAditya\binitsA. and \bauthor\bsnmLipton, \bfnmZachary C\binitsZ. C. (\byear2018). \btitleDeep Bayesian active learning for natural language processing: results of a large-scale empirical study. \bjournalarXiv preprint arXiv:1808.05697. \endbibitem
- {barticle}[author] \bauthor\bsnmSmith, \bfnmKirstine\binitsK. (\byear1918). \btitleOn the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. \bjournalBiometrika. \endbibitem
- {barticle}[author] \bauthor\bsnmStroud, \bfnmJonathan R\binitsJ. R., \bauthor\bsnmMüller, \bfnmPeter\binitsP. and \bauthor\bsnmRosner, \bfnmGary L\binitsG. L. (\byear2001). \btitleOptimal sampling times in population pharmacokinetic studies. \bjournalJournal of the Royal Statistical Society: Series C (Applied Statistics). \endbibitem
- {barticle}[author] \bauthor\bsnmStuhlmüller, \bfnmAndreas\binitsA., \bauthor\bsnmTaylor, \bfnmJacob\binitsJ. and \bauthor\bsnmGoodman, \bfnmNoah\binitsN. (\byear2013). \btitleLearning stochastic inverses. \bjournalConference on Neural Information Processing Systems. \endbibitem
- {barticle}[author] \bauthor\bsnmSun, \bfnmYi\binitsY., \bauthor\bsnmGomez, \bfnmFaustino\binitsF. and \bauthor\bsnmSchmidhuber, \bfnmJürgen\binitsJ. (\byear2011). \btitlePlanning to be surprised: optimal Bayesian exploration in dynamic environments. \bjournalInternational Conference on Artificial General Intelligence. \endbibitem
- {bbook}[author] \bauthor\bsnmSutton, \bfnmRichard S\binitsR. S. and \bauthor\bsnmBarto, \bfnmAndrew G\binitsA. G. (\byear2018). \btitleReinforcement Learning: an Introduction. \bpublisherMIT Press. \endbibitem
- {barticle}[author] \bauthor\bsnmSzepesvári, \bfnmCsaba\binitsC. (\byear2010). \btitleAlgorithms for Reinforcement Learning. \bjournalSynthesis Lectures on Artificial Intelligence and Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmTsutakawa, \bfnmRobert K\binitsR. K. (\byear1972). \btitleDesign of experiment for bioassay. \bjournalJournal of the American Statistical Association. \endbibitem
- {barticle}[author] \bauthor\bparticlevan \bsnmDen Berg, \bfnmJojanneke\binitsJ., \bauthor\bsnmCurtis, \bfnmAndrew\binitsA. and \bauthor\bsnmTrampert, \bfnmJeannot\binitsJ. (\byear2003). \btitleOptimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments. \bjournalGeophysical Journal International. \endbibitem
- {barticle}[author] \bauthor\bparticlevan den \bsnmOord, \bfnmAäron\binitsA., \bauthor\bsnmLi, \bfnmYazhe\binitsY. and \bauthor\bsnmVinyals, \bfnmOriol\binitsO. (\byear2018). \btitleRepresentation learning with contrastive predictive coding. \bjournalarXiv preprint arXiv:1807.03748. \endbibitem
- {barticle}[author] \bauthor\bparticlevon \bsnmKügelgen, \bfnmJulius\binitsJ., \bauthor\bsnmRubenstein, \bfnmPaul K\binitsP. K., \bauthor\bsnmSchölkopf, \bfnmBernhard\binitsB. and \bauthor\bsnmWeller, \bfnmAdrian\binitsA. (\byear2019). \btitleOptimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks. \bjournalNeurIPS Workshop on “Do the Right Thing: Machine Learning and Causal Inference for Improved Decision Making”. \endbibitem
- {barticle}[author] \bauthor\bsnmWalker, \bfnmStephen G\binitsS. G. (\byear2016). \btitleBayesian information in an experiment and the Fisher information distance. \bjournalStatistics & Probability Letters. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmZi\binitsZ. and \bauthor\bsnmJegelka, \bfnmStefanie\binitsS. (\byear2017). \btitleMax-value entropy search for efficient Bayesian optimization. \bjournalInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmWatson, \bfnmAndrew B\binitsA. B. (\byear2017). \btitleQUEST+: a general multidimensional Bayesian adaptive psychometric method. \bjournalJournal of Vision. \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmJiaxin\binitsJ., \bauthor\bsnmBi, \bfnmSirui\binitsS. and \bauthor\bsnmZhang, \bfnmGuannan\binitsG. (\byear2021). \btitleA scalable gradient-free method for Bayesian experimental design with implicit models. \bjournalInternational Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmZheng, \bfnmSue\binitsS., \bauthor\bsnmPacheco, \bfnmJason\binitsJ. and \bauthor\bsnmFisher, \bfnmJohn\binitsJ. (\byear2018). \btitleA robust approach to sequential information theoretic planning. \bjournalInternational Conference on Machine Learning. \endbibitem