Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

An active-set method for sparse approximations. Part II: General piecewise-linear terms (2302.14497v1)

Published 28 Feb 2023 in math.OC

Abstract: In this paper we present an efficient active-set method for the solution of convex quadratic programming problems with general piecewise-linear terms in the objective, with applications to sparse approximations and risk-minimization. The method exploits the structure of the piecewise-linear terms appearing in the objective in order to significantly reduce its memory requirements, and thus improve its efficiency. We showcase the robustness of the proposed solver on a variety of problems arising in risk-averse portfolio selection, quantile regression, and binary classification via linear support vector machines. We provide computational evidence to demonstrate, on real-world datasets, the ability of the solver of efficiently handling a variety of problems, by comparing it against an efficient general-purpose interior point solver as well as a state-of-the-art alternating direction method of multipliers. This work complements the accompanying paper [``An active-set method for sparse approximations. Part I: Separable $\ell_1$ terms", S. Pougkakiotis, J. Gondzio, D. S. Kalogerias], in which we discuss the case of separable $\ell_1$ terms, analyze the convergence, and propose general-purpose preconditioning strategies for the solution of its associated linear systems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.