Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Monochromatic arithmetic progressions in automatic sequences with group structure (2302.12908v1)

Published 24 Feb 2023 in math.CO and math.DS

Abstract: We determine asymptotic growth rates for lengths of monochromatic arithmetic progressions in certain automatic sequences. In particular, we look at (one-sided) fixed points of aperiodic, primitive, bijective substitutions and spin substitutions, which are generalisations of the Thue--Morse and Rudin--Shapiro substitutions, respectively. For such infinite words, we show that there exists a subsequence $\left{d_n\right}$ of differences along which the maximum length $A(d_n)$ of a monochromatic arithmetic progression (with fixed difference $d_n$) grows at least polynomially in $d_n$. Explicit upper and lower bounds for the growth exponent can be derived from a finite group associated to the substitution. As an application, we obtain bounds for a van der Waerden-type number for a class of colourings parametrised by the size of the alphabet and the length of the substitution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.