Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robot path planning using deep reinforcement learning (2302.09120v2)

Published 17 Feb 2023 in cs.RO and cs.AI

Abstract: Autonomous navigation is challenging for mobile robots, especially in an unknown environment. Commonly, the robot requires multiple sensors to map the environment, locate itself, and make a plan to reach the target. However, reinforcement learning methods offer an alternative to map-free navigation tasks by learning the optimal actions to take. In this article, deep reinforcement learning agents are implemented using variants of the deep Q networks method, the D3QN and rainbow algorithms, for both the obstacle avoidance and the goal-oriented navigation task. The agents are trained and evaluated in a simulated environment. Furthermore, an analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.

Citations (3)

Summary

We haven't generated a summary for this paper yet.