Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semidefinite approximations for bicliques and biindependent pairs (2302.08886v2)

Published 17 Feb 2023 in math.CO and math.OC

Abstract: We investigate some graph parameters dealing with biindependent pairs $(A,B)$ in a bipartite graph $G=(V_1\cup V_2,E)$, i.e., pairs $(A,B)$ where $A\subseteq V_1$, $B\subseteq V_2$ and $A\cup B$ is independent. These parameters also allow to study bicliques in general graphs. When maximizing the cardinality $|A\cup B|$ one finds the stability number $\alpha(G)$, well-known to be polynomial-time computable. When maximizing the product $|A|\cdot |B|$ one finds the parameter $g(G)$, shown to be NP-hard by Peeters (2003), and when maximizing the ratio $|A|\cdot |B|/|A\cup B|$ one finds $h(G)$, introduced by Vallentin (2020) for bounding product-free sets in finite groups. We show that $h(G)$ is an NP-hard parameter and, as a crucial ingredient, that it is NP-complete to decide whether a bipartite graph $G$ has a balanced maximum independent set. These hardness results motivate introducing semidefinite programming bounds for $g(G)$, $h(G)$, and $\alpha_{\text{bal}}(G)$ (the maximum cardinality of a balanced independent set). We show that these bounds can be seen as natural variations of the Lov\'{a}sz $\vartheta$-number, a well-known semidefinite bound on $\alpha(G)$. In addition we formulate closed-form eigenvalue bounds and we show relationships among them as well as with earlier spectral parameters by Hoffman, Haemers (2001) and Vallentin (2020).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.