Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Competitive Ratio for Edge-Weighted Online Stochastic Matching (2302.05633v2)

Published 11 Feb 2023 in cs.DS

Abstract: We consider the edge-weighted online stochastic matching problem, in which an edge-weighted bipartite graph G=(I\cup J, E) with offline vertices J and online vertex types I is given. The online vertices have types sampled from I with probability proportional to the arrival rates of online vertex types. The online algorithm must make immediate and irrevocable matching decisions with the objective of maximizing the total weight of the matching. For the problem with general arrival rates, Feldman et al. (FOCS 2009) proposed the Suggested Matching algorithm and showed that it achieves a competitive ratio of 1-1/e \approx 0.632. The ratio has recently been improved to 0.645 by Yan (2022), who proposed the Multistage Suggested Matching (MSM) algorithm. In this paper, we propose the Evolving Suggested Matching (ESM) algorithm, and show that it achieves a competitive ratio of 0.650.

Citations (7)

Summary

We haven't generated a summary for this paper yet.