Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge-weighted Online Stochastic Matching: Beating $1-\frac1e$ (2210.12543v2)

Published 22 Oct 2022 in cs.DS

Abstract: We study the edge-weighted online stochastic matching problem. Since Feldman, Mehta, Mirrokni, and Muthukrishnan proposed the $(1-\frac1e)$-competitive Suggested Matching algorithm, there has been no improvement for the general edge-weighted online stochastic matching problem. In this paper, we introduce the first algorithm beating the $1-\frac1e$ barrier in this setting, achieving a competitive ratio of $0.645$. Under the LP proposed by Jaillet and Lu, we design an algorithmic preprocessing, dividing all edges into two classes. Then based on the Suggested Matching algorithm, we adjust the matching strategy to improve the performance on one class in the early stage and on another class in the late stage, while keeping the matching events of different edges highly independent. By balancing them, we finally guarantee the matched probability of every single edge.

Citations (8)

Summary

We haven't generated a summary for this paper yet.