Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-domain Random Pre-training with Prototypes for Reinforcement Learning (2302.05614v3)

Published 11 Feb 2023 in cs.LG and cs.AI

Abstract: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency. The complete code is available at https://github.com/liuxin0824/CRPTpro.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xin Liu (820 papers)
  2. Yaran Chen (23 papers)
  3. Haoran Li (166 papers)
  4. Boyu Li (59 papers)
  5. Dongbin Zhao (62 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets