Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-training Contextualized World Models with In-the-wild Videos for Reinforcement Learning (2305.18499v2)

Published 29 May 2023 in cs.CV, cs.LG, and cs.RO

Abstract: Unsupervised pre-training methods utilizing large and diverse datasets have achieved tremendous success across a range of domains. Recent work has investigated such unsupervised pre-training methods for model-based reinforcement learning (MBRL) but is limited to domain-specific or simulated data. In this paper, we study the problem of pre-training world models with abundant in-the-wild videos for efficient learning of downstream visual control tasks. However, in-the-wild videos are complicated with various contextual factors, such as intricate backgrounds and textured appearance, which precludes a world model from extracting shared world knowledge to generalize better. To tackle this issue, we introduce Contextualized World Models (ContextWM) that explicitly separate context and dynamics modeling to overcome the complexity and diversity of in-the-wild videos and facilitate knowledge transfer between distinct scenes. Specifically, a contextualized extension of the latent dynamics model is elaborately realized by incorporating a context encoder to retain contextual information and empower the image decoder, which encourages the latent dynamics model to concentrate on essential temporal variations. Our experiments show that in-the-wild video pre-training equipped with ContextWM can significantly improve the sample efficiency of MBRL in various domains, including robotic manipulation, locomotion, and autonomous driving. Code is available at this repository: https://github.com/thuml/ContextWM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jialong Wu (36 papers)
  2. Haoyu Ma (45 papers)
  3. Chaoyi Deng (3 papers)
  4. Mingsheng Long (110 papers)
Citations (15)