Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GMConv: Modulating Effective Receptive Fields for Convolutional Kernels (2302.04544v3)

Published 9 Feb 2023 in cs.CV

Abstract: In convolutional neural networks, the convolutions are conventionally performed using a square kernel with a fixed N $\times$ N receptive field (RF). However, what matters most to the network is the effective receptive field (ERF) that indicates the extent with which input pixels contribute to an output pixel. Inspired by the property that ERFs typically exhibit a Gaussian distribution, we propose a Gaussian Mask convolutional kernel (GMConv) in this work. Specifically, GMConv utilizes the Gaussian function to generate a concentric symmetry mask that is placed over the kernel to refine the RF. Our GMConv can directly replace the standard convolutions in existing CNNs and can be easily trained end-to-end by standard back-propagation. We evaluate our approach through extensive experiments on image classification and object detection tasks. Over several tasks and standard base models, our approach compares favorably against the standard convolution. For instance, using GMConv for AlexNet and ResNet-50, the top-1 accuracy on ImageNet classification is boosted by 0.98% and 0.85%, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.