Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimized Hybrid Focal Margin Loss for Crack Segmentation (2302.04395v1)

Published 9 Feb 2023 in cs.CV and eess.IV

Abstract: Many loss functions have been derived from cross-entropy loss functions such as large-margin softmax loss and focal loss. The large-margin softmax loss makes the classification more rigorous and prevents overfitting. The focal loss alleviates class imbalance in object detection by down-weighting the loss of well-classified examples. Recent research has shown that these two loss functions derived from cross entropy have valuable applications in the field of image segmentation. However, to the best of our knowledge, there is no unified formulation that combines these two loss functions so that they can not only be transformed mutually, but can also be used to simultaneously address class imbalance and overfitting. To this end, we subdivide the entropy-based loss into the regularizer-based entropy loss and the focal-based entropy loss, and propose a novel optimized hybrid focal loss to handle extreme class imbalance and prevent overfitting for crack segmentation. We have evaluated our proposal in comparison with three crack segmentation datasets (DeepCrack-DB, CRACK500 and our private PanelCrack dataset). Our experiments demonstrate that the focal margin component can significantly increase the IoU of cracks by 0.43 on DeepCrack-DB and 0.44 on our PanelCrack dataset, respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube