Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiway Spectral Graph Partitioning: Cut Functions, Cheeger Inequalities, and a Simple Algorithm (2302.03615v1)

Published 7 Feb 2023 in math.NA and cs.NA

Abstract: The problem of multiway partitioning of an undirected graph is considered. A spectral method is used, where the k > 2 largest eigenvalues of the normalized adjacency matrix (equivalently, the k smallest eigenvalues of the normalized graph Laplacian) are computed. It is shown that the information necessary for partitioning is contained in the subspace spanned by the k eigenvectors. The partitioning is encoded in a matrix $\Psi$ in indicator form, which is computed by approximating the eigenvector matrix by a product of $\Psi$ and an orthogonal matrix. A measure of the distance of a graph to being k-partitionable is defined, as well as two cut (cost) functions, for which Cheeger inequalities are proved; thus the relation between the eigenvalue and partitioning problems is established. Numerical examples are given that demonstrate that the partitioning algorithm is efficient and robust.

Summary

We haven't generated a summary for this paper yet.