Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partitioning into Expanders (1309.3223v3)

Published 12 Sep 2013 in cs.DS, math.SP, and stat.ML

Abstract: Let G=(V,E) be an undirected graph, lambda_k be the k-th smallest eigenvalue of the normalized laplacian matrix of G. There is a basic fact in algebraic graph theory that lambda_k > 0 if and only if G has at most k-1 connected components. We prove a robust version of this fact. If lambda_k>0, then for some 1\leq \ell\leq k-1, V can be {\em partitioned} into l sets P_1,\ldots,P_l such that each P_i is a low-conductance set in G and induces a high conductance induced subgraph. In particular, \phi(P_i)=O(l3\sqrt{\lambda_l}) and \phi(G[P_i]) >= \lambda_k/k2). We make our results algorithmic by designing a simple polynomial time spectral algorithm to find such partitioning of G with a quadratic loss in the inside conductance of P_i's. Unlike the recent results on higher order Cheeger's inequality [LOT12,LRTV12], our algorithmic results do not use higher order eigenfunctions of G. If there is a sufficiently large gap between lambda_k and lambda_{k+1}, more precisely, if \lambda_{k+1} >= \poly(k) lambda_{k}{1/4} then our algorithm finds a k partitioning of V into sets P_1,...,P_k such that the induced subgraph G[P_i] has a significantly larger conductance than the conductance of P_i in G. Such a partitioning may represent the best k clustering of G. Our algorithm is a simple local search that only uses the Spectral Partitioning algorithm as a subroutine. We expect to see further applications of this simple algorithm in clustering applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shayan Oveis Gharan (50 papers)
  2. Luca Trevisan (43 papers)
Citations (59)