Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Carrollian Origins of Bjorken Flow (2302.03053v2)

Published 6 Feb 2023 in hep-th, hep-ph, and nucl-th

Abstract: Bjorken flow is among the simplest models of fluids moving near the speed of light ($c$) while Carroll symmetry arises as a contraction of Poincar\'{e} group when $c \to 0$. We show that Bjorken flow and its phenomenological approximations are completely captured by Carrollian fluids. Carrollian symmetries arise on generic null surfaces and a fluid moving at $c$ is restricted to such a surface, thereby naturally inheriting the symmetries. Carrollian hydrodynamics is thus not exotic, but rather ubiquitous, and provides a concrete framework for fluids moving at or near the speed of light.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27, 140 (1983).
  2. L. Leblond, Une nouvelle limite non-relativiste du group de Poincaré, Annales Poincare Phys.Theor. 3 (1965).
  3. N. Sen Gupta, On an Analogue of the Galileo Group, Nuovo Cim. 54, 512 (1966).
  4. C. Duval, G. W. Gibbons, and P. A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31, 092001 (2014a), arXiv:1402.5894 [gr-qc] .
  5. A. Bagchi, Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories, Phys. Rev. Lett. 105, 171601 (2010), arXiv:1006.3354 [hep-th] .
  6. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269, 21 (1962).
  7. R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128, 2851 (1962).
  8. A. Bagchi and R. Fareghbal, BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries, JHEP 10, 092, arXiv:1203.5795 [hep-th] .
  9. G. Barnich, A. Gomberoff, and H. A. Gonzalez, The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86, 024020 (2012), arXiv:1204.3288 [gr-qc] .
  10. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10, 095, arXiv:1208.4371 [hep-th] .
  11. A. Bagchi, Tensionless Strings and Galilean Conformal Algebra, JHEP 05, 141, arXiv:1303.0291 [hep-th] .
  12. A. Bagchi, S. Chakrabortty, and P. Parekh, Tensionless Strings from Worldsheet Symmetries, JHEP 01, 158, arXiv:1507.04361 [hep-th] .
  13. L. Freidel and P. Jai-akson, Carrollian hydrodynamics from symmetries,   (2022a), arXiv:2209.03328 [hep-th] .
  14. L. Freidel and P. Jai-akson, Carrollian hydrodynamics and symplectic structure on stretched horizons,   (2022b), arXiv:2211.06415 [gr-qc] .
  15. We will discuss recent connections of Carroll hydrodynamics to the black hole membrane paradigm [37] near the end of the paper.
  16. When we speak of Bjorken flow, we will work in the natural units c=ℏ=1𝑐Planck-constant-over-2-pi1c=\hbar=1italic_c = roman_ℏ = 1. We will make the factors of c𝑐citalic_c explicit when we take the Carroll limit below.
  17. M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31, 47 (1979).
  18. The attentive reader may point out that we have not shown that ε=ε⁢(τ)𝜀𝜀𝜏\varepsilon=\varepsilon(\tau)italic_ε = italic_ε ( italic_τ ), as required by Bjorken’s approximation. This is implicit. The Carroll fluid will have an equation of state p=p⁢(ε)𝑝𝑝𝜀p=p(\varepsilon)italic_p = italic_p ( italic_ε ). We have shown p=p⁢(τ)𝑝𝑝𝜏p=p(\tau)italic_p = italic_p ( italic_τ ). Hence ε=ε⁢(τ)𝜀𝜀𝜏\varepsilon=\varepsilon(\tau)italic_ε = italic_ε ( italic_τ ).
  19. This acts as ∇^i⁢Vj=∂^i⁢Vj+γ^i⁢kj⁢Vksubscript^∇𝑖superscript𝑉𝑗subscript^𝑖superscript𝑉𝑗subscriptsuperscript^𝛾𝑗𝑖𝑘superscript𝑉𝑘\hat{\nabla}_{i}V^{j}=\hat{\partial}_{i}V^{j}+\hat{\gamma}^{j}_{ik}V^{k}over^ start_ARG ∇ end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_V start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT = over^ start_ARG ∂ end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_V start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT + over^ start_ARG italic_γ end_ARG start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT italic_V start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. The Levi-Civita-Carroll connection coefficients are given via γ^j⁢ki=ai⁢l2⁢(∂^j⁢ak⁢l+∂^k⁢aj⁢l−∂^l⁢aj⁢k).subscriptsuperscript^𝛾𝑖𝑗𝑘superscript𝑎𝑖𝑙2subscript^𝑗subscript𝑎𝑘𝑙subscript^𝑘subscript𝑎𝑗𝑙subscript^𝑙subscript𝑎𝑗𝑘\hat{\gamma}^{i}_{jk}=\frac{a^{il}}{2}\left(\hat{\partial}_{j}a_{kl}+\hat{% \partial}_{k}a_{jl}-\hat{\partial}_{l}a_{jk}\right).over^ start_ARG italic_γ end_ARG start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT = divide start_ARG italic_a start_POSTSUPERSCRIPT italic_i italic_l end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( over^ start_ARG ∂ end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_k italic_l end_POSTSUBSCRIPT + over^ start_ARG ∂ end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_j italic_l end_POSTSUBSCRIPT - over^ start_ARG ∂ end_ARG start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ) . For more details, see [25].
  20. T. Damour, Black Hole Eddy Currents, Phys. Rev. D 18, 3598 (1978).
  21. R. H. Price and K. S. Thorne, Membrane Viewpoint on Black Holes: Properties and Evolution of the Stretched Horizon, Phys. Rev. D 33, 915 (1986).
  22. L. Donnay and C. Marteau, Carrollian Physics at the Black Hole Horizon, Class. Quant. Grav. 36, 165002 (2019), arXiv:1903.09654 [hep-th] .
  23. R. F. Penna, Near-horizon Carroll symmetry and black hole Love numbers,   (2018), arXiv:1812.05643 [hep-th] .
  24. J. Redondo-Yuste and L. Lehner, Non-linear black hole dynamics and Carrollian fluids,   (2022), arXiv:2212.06175 [gr-qc] .
  25. L. Susskind, Holography in the flat space limit, AIP Conf. Proc. 493, 98 (1999), arXiv:hep-th/9901079 .
  26. J. Polchinski, S matrices from AdS space-time,   (1999), arXiv:hep-th/9901076 .
  27. S. B. Giddings, Flat space scattering and bulk locality in the AdS / CFT correspondence, Phys. Rev. D 61, 106008 (2000), arXiv:hep-th/9907129 .
  28. R. A. Janik and R. B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of Ads/CFT, Phys. Rev. D 73, 045013 (2006), arXiv:hep-th/0512162 .
  29. R. A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98, 022302 (2007), arXiv:hep-th/0610144 .
Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube