Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-depth simulations of fermionic systems on square-grid quantum hardware (2302.01862v3)

Published 3 Feb 2023 in quant-ph

Abstract: We present a general strategy for mapping fermionic systems to quantum hardware with square qubit connectivity which yields low-depth quantum circuits, counted in the number of native two-qubit fSIM gates. We achieve this by leveraging novel operator decomposition and circuit compression techniques paired with specifically chosen low-depth fermion-to-qubit mappings and allow for a high degree of gate cancellations and parallelism. Our mappings retain the flexibility to simultaneously optimize for qubit counts or qubit operator weights and can be used to investigate arbitrary fermionic lattice geometries. We showcase our approach by investigating the tight-binding model, the Fermi-Hubbard model as well as the multi-orbital Hubbard-Kanamori model. We report unprecedentedly low circuit depths per single Trotter layer with up to a $70 \%$ improvement upon previous state-of-the-art. Our compression technique also results in significant reduction of two-qubit gates. We find the lowest gate-counts when applying the XYZ-formalism to the DK mapping. Additionally, we show that our decomposition and compression formalism produces favourable circuits even when no native parameterized two-qubit gates are available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. I. Georgescu, S. Ashhab, and F. Nori, Reviews of Modern Physics 86, 153 (2014).
  2. M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).
  3. P. Jordan and E. Wigner, Zeitschrift für Physik 47, 631 (1928).
  4. M. Steudtner and S. Wehner, New Journal of Physics 20, 063010 (2018).
  5. M. Chiew and S. Strelchuk, Optimal fermion-qubit mappings (2021).
  6. R. W. Chien and J. Klassen, Optimizing fermionic encodings for both Hamiltonian and hardware (2022).
  7. V. Havlíček, M. Troyer, and J. D. Whitfield, Physical Review A 95, 10.1103/physreva.95.032332 (2017).
  8. A. Y. Vlasov, Clifford algebras, spin groups and qubit trees (2019).
  9. J. Haah, Revista Colombiana de Matemáticas 50, 299 (2017).
  10. N. Tantivasadakarn, Physical Review Research 2, 10.1103/physrevresearch.2.023353 (2020).
  11. Y.-A. Chen, A. V. Gorshkov, and Y. Xu, Error-correcting codes for fermionic quantum simulation (2022).
  12. A. Bochniak and B. Ruba, Journal of High Energy Physics 2020, 10.1007/jhep12(2020)118 (2020).
  13. L. Clinton, J. Bausch, and T. Cubitt, Nature Communications 12, 10.1038/s41467-021-25196-0 (2021).
  14. J. Nys and G. Carleo, Quantum 6, 833 (2022).
  15. S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298, 210 (2002).
  16. R. C. Ball, Physical Review Letters 95, 10.1103/physrevlett.95.176407 (2005).
  17. F. Verstraete and J. I. Cirac, Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).
  18. Y.-A. Chen, A. Kapustin, and D. Radičević, Annals of Physics 393, 234 (2018).
  19. K. Setia and J. D. Whitfield, The Journal of Chemical Physics 148, 164104 (2018).
  20. Y.-A. Chen and Y. Xu, Equivalence between fermion-to-qubit mappings in two spatial dimensions (2022).
  21. M. Nielsen and I. Chuang, Quantum computation and quantum information (Cambridge University Press, 2000).
  22. J. Kanamori, Progress of Theoretical Physics 30, 275 (1963).
  23. A. Georges, L. de' Medici, and J. Mravlje, Annual Review of Condensed Matter Physics 4, 137 (2013).
  24. H. Hao, B. M. Rubenstein, and H. Shi, Physical Review B 99, 10.1103/physrevb.99.235142 (2019).
  25. X. Yang, H. Zheng, and M. Qin, Phys. Rev. B 103, 155110 (2021).
  26. A. R. Medeiros-Silva, N. C. Costa, and T. Paiva, Phys. Rev. B 107, 035134 (2023).
  27. C. Derby and J. Klassen, A compact fermion to qubit mapping part 2: Alternative lattice geometries (2021).
  28. R. Cleve and D. Gottesman, Phys. Rev. A 56, 76 (1997).
  29. T. Hagge and N. Wiebe, Error mitigation via error detection using generalized superfast encodings (2023), arXiv:2309.11673 [quant-ph] .
  30. S. Jiang, D. J. Scalapino, and S. R. White, Density-matrix-renormalization-group-based downfolding of the three-band hubbard model: the importance of density-assisted hopping (2023).
  31. S. Lloyd, Science 273, 1073 (1996).
  32. M. Suzuki, Communications in Mathematical Physics 51, 183 (1976).
  33. A. M. Childs and N. Wiebe, arXiv 10.48550/ARXIV.1202.5822 (2012).
  34. A. M. Childs, A. Ostrander, and Y. Su, Quantum 3, 182 (2019).
  35. E. Campbell, Physical Review Letters 123, 10.1103/physrevlett.123.070503 (2019).
  36. A. Y. Kitaev, Quantum measurements and the Abelian stabilizer problem (1995).
  37. D. Wecker, M. B. Hastings, and M. Troyer, Physical Review A 92, 10.1103/physreva.92.042303 (2015).
  38. R. D. Somma, New Journal of Physics 21, 123025 (2019).
  39. K. Bharti and T. Haug, Physical Review A 104, 10.1103/physreva.104.l050401 (2021a).
  40. K. Bharti and T. Haug, Physical Review A 104, 042418 (2021b).
  41. F. Vatan and C. Williams, Physical Review A 69, 10.1103/physreva.69.032315 (2004).
  42. L. Helmholz, Journal of the American Chemical Society 69, 886 (1947).
  43. N. J. Ross and P. Selinger, Optimal ancilla-free clifford+t approximation of z-rotations (2016), arXiv:1403.2975 [quant-ph] .
  44. G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
  45. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com