Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum algorithms to simulate many-body physics of correlated fermions (1711.05395v3)

Published 15 Nov 2017 in quant-ph

Abstract: Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. Here, we discuss quantum simulation of strongly correlated fermionic systems. We focus specifically on 2D and linear geometry with nearest neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with $O(N2)$ gates and $O(N)$ circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those to describe the quantum states. Furthermore, we propose an algorithm to implement the 2-dimensional (2D) fermionic Fourier transformation on a 2D qubit array with only $O(N{1.5})$ gates and $O(\sqrt N)$ circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model---again on a 2D qubit array---with $O(N)$ gates and $O(\sqrt N)$ circuit depth. Finally, we discuss how these algorithms can be used to determine the ground state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.

Summary

We haven't generated a summary for this paper yet.