Fourier series weight in quantum machine learning (2302.00105v2)
Abstract: In this work, we aim to confirm the impact of the Fourier series on the quantum machine learning model. We will propose models, tests, and demonstrations to achieve this objective. We designed a quantum machine learning leveraged on the Hamiltonian encoding. With a subtle change, we performed the trigonometric interpolation, binary and multiclass classifier, and a quantum signal processing application. We also proposed a block diagram of determining approximately the Fourier coefficient based on quantum machine learning. We performed and tested all the proposed models using the Pennylane framework.
- Nilasis Chaudhuri and Eduard Feireisl, “Navier–stokes–fourier system with dirichlet boundary conditions,” Applicable Analysis 101, 4076–4094 (2022).
- Andris Ambainis, “Quantum walk algorithm for element distinctness,” SIAM Journal on Computing 37, 210–239 (2007).
- Maria Schuld and Francesco Petruccione, Supervised learning with quantum computers, Vol. 17 (Springer, 2018).
- Julia Kempe, Alexei Kitaev, and Oded Regev, “The complexity of the local hamiltonian problem,” Siam journal on computing 35, 1070–1097 (2006).
- Andrew M Childs and Robin Kothari, “Simulating sparse hamiltonians with star decompositions,” in Conference on Quantum Computation, Communication, and Cryptography (Springer, 2010) pp. 94–103.
- Naomichi Hatano and Masuo Suzuki, “Finding exponential product formulas of higher orders,” in Quantum annealing and other optimization methods (Springer, 2005) pp. 37–68.
- Richard Meister, Simon C Benjamin, and Earl T Campbell, “Tailoring term truncations for electronic structure calculations using a linear combination of unitaries,” Quantum 6, 637 (2022).
- Shengbin Wang, Zhimin Wang, Guolong Cui, Shangshang Shi, Ruimin Shang, Lixin Fan, Wendong Li, Zhiqiang Wei, and Yongjian Gu, “Fast black-box quantum state preparation based on linear combination of unitaries,” Quantum Information Processing 20, 1–14 (2021).
- Guillermo Alonso-Linaje and Parfait Atchade-Adelomou, “Eva: a quantum exponential value approximation algorithm,” (2021).
- Hans De Raedt and Bart De Raedt, “Applications of the generalized trotter formula,” Physical Review A 28, 3575 (1983).
- Gian Giacomo Guerreschi, “Repeat-until-success circuits with fixed-point oblivious amplitude amplification,” Physical Review A 99, 022306 (2019).
- Leonardo Novo and Dominic W. Berry, “Improved hamiltonian simulation via a truncated taylor series and corrections,” (2016), 10.48550/ARXIV.1611.10033.
- Yonina C Eldar and Alan V Oppenheim, “Quantum signal processing,” IEEE Signal Processing Magazine 19, 12–32 (2002).
- Thais de Lima Silva, Lucas Borges, and Leandro Aolita, “Fourier-based quantum signal processing,” (2022).
- Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, “Expressive power of parametrized quantum circuits,” Physical Review Research 2, 033125 (2020).
- Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer, “Effect of data encoding on the expressive power of variational quantum-machine-learning models,” Physical Review A 103 (2021), 10.1103/physreva.103.032430.
- Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I Latorre, “Data re-uploading for a universal quantum classifier,” Quantum 4, 226 (2020).
- Nathan Killoran, Thomas R Bromley, Juan Miguel Arrazola, Maria Schuld, Nicolás Quesada, and Seth Lloyd, “Continuous-variable quantum neural networks,” Physical Review Research 1, 033063 (2019).
- Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik, “Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms,” Advanced Quantum Technologies 2, 1900070 (2019).
- Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud Mohseni, “Universal discriminative quantum neural networks,” Quantum Machine Intelligence 3, 1–11 (2021).
- Jacob Biamonte, “Universal variational quantum computation,” Physical Review A 103, L030401 (2021).
- Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione, “An introduction to quantum machine learning,” Contemporary Physics 56, 172–185 (2015).
- Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd, “Quantum machine learning,” Nature 549, 195–202 (2017).
- Vedran Dunjko, Jacob M Taylor, and Hans J Briegel, “Quantum-enhanced machine learning,” Physical review letters 117, 130501 (2016).
- Parfait Atchade Adelomou, Elisabet Golobardes Ribé, and Xavier Vilasís Cardona, “Using the variational-quantum-eigensolver (vqe) to create an intelligent social workers schedule problem solver,” in International Conference on Hybrid Artificial Intelligence Systems (Springer, 2020) pp. 245–260.
- Parfait Atchade-Adelomou and Guillermo Alonso-Linaje, “Quantum-enhanced filter: Qfilter,” Soft Computing , 1–8 (2022).
- Parfait Atchade Adelomou, Daniel Casado Fauli, Elisabet Golobardes Ribé, and Xavier Vilasis-Cardona, “Quantum case-based reasoning (qcbr),” Artificial Intelligence Review , 1–27 (2022).
- Alonso-Linaje Guillermo, “¿quieres aprender computación cuántica ?” (2023).
- S. Consul-Pacareu, R. Montaño, Kevin Rodriguez-Fernandez, Àlex Corretgé, Esteve Vilella-Moreno, Daniel Casado-Faulí, and Parfait Atchade-Adelomou, “Quantum machine learning hyperparameter search,” (2023), arXiv:2302.10298 [cs.LG] .
- Parfait Atchade-Adelomou, Daniel Casado-Fauli, Elisabet Golobardes-Ribe, and Xavier Vilasis-Cardona, “quantum case-based reasoning (qcbr),” (2021), arXiv:2104.00409 [cs.AI] .
- Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M Chow, and Jay M Gambetta, “Supervised learning with quantum-enhanced feature spaces,” Nature 567, 209–212 (2019).
- Maria Schuld and Nathan Killoran, “Quantum machine learning in feature hilbert spaces,” Physical review letters 122, 040504 (2019).
- Peter Wittek and Fernando M Cucchietti, “A second-order distributed trotter–suzuki solver with a hybrid cpu–gpu kernel,” Computer Physics Communications 184, 1165–1171 (2013).
- Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran, “Quantum embeddings for machine learning,” arXiv preprint arXiv:2001.03622 (2020).
- Yudai Suzuki, Hiroshi Yano, Qi Gao, Shumpei Uno, Tomoki Tanaka, Manato Akiyama, and Naoki Yamamoto, “Analysis and synthesis of feature map for kernel-based quantum classifier,” Quantum Machine Intelligence 2, 1–9 (2020).
- Parfait Atchade-Adelomou, “Quantum algorithms for solving hard constrained optimisation problems,” (2022), arXiv:2202.13125 [quant-ph] .
- Saul Gonzalez and Parfait Atchade-Adelomou, “Quantum improvement in spatial discretization,” (2023), arXiv:2312.09036 [quant-ph] .
- Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven, “Barren plateaus in quantum neural network training landscapes,” Nature communications 9, 1–6 (2018).
- Saul Gonzalez-Bermejo, Guillermo Alonso-Linaje, and Parfait Atchade-Adelomou, “Gps: A new tsp formulation for its generalizations type qubo,” Mathematics 10, 416 (2022).
- Parfait Atchade-Adelomou and Saul Gonzalez, “Efficient quantum modular arithmetics for the isq era,” (2023), arXiv:2311.08555 [quant-ph] .
- Francisco Javier Gil Vidal and Dirk Oliver Theis, “Input redundancy for parameterized quantum circuits,” Frontiers in Physics 8, 297 (2020).
- Tokio SAKURAI, “An extension of parseval theorem,” Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 20, 162–165 (1938).
- Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles, “Connecting ansatz expressibility to gradient magnitudes and barren plateaus,” PRX Quantum 3, 010313 (2022).
- HJ Landau, “Sampling, data transmission, and the nyquist rate,” Proceedings of the IEEE 55, 1701–1706 (1967).
- Xanadu Pennylane, “This module contains functions to analyze the fourier representation of quantum circuits.” (2023).
- Atchade Parfait Adelomou, Elisabet Golobardes Ribé, and Xavier Vilasis Cardona, “Formulation of the social workers’ problem in quadratic unconstrained binary optimization form and solve it on a quantum computer,” Journal of Computer and Communications 8, 44–68 (2020).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.