Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Lepton portal dark matter at muon colliders: Total rates and generic features for phenomenologically viable scenarios (2301.12524v1)

Published 29 Jan 2023 in hep-ph

Abstract: Lepton portal dark matter (DM) models are a class of models where the DM candidates solely couple to charged leptons through a mediator carrying a lepton number. These models are very interesting since they avoid constraints from direct detection experiments even for coupling of order ${\cal O}(1)$, they have small annihilation cross sections, and can be probed efficiently at lepton colliders. In this work, we consider a minimal lepton portal DM model which consists of extending the SM with two $SU(2)_L$ singlets: a charged scalar singlet and an electrically neutral right-handed fermion. We systematically study the production mechanisms of DM at multi-TeV muon colliders. After considering all the possible theoretical and experimental constraints and studying the phenomenology of lepton flavour violation and DM in the muon-philic scenario, we analyse the production rates of 54 channels (26 channels for prompt DM production and 28 channels for charged scalar production) at multi-TeV muon colliders. Finally, we discuss the possible collider signatures of some channels and the corresponding backgrounds. We find that at least 9 channels for DM production can be very efficient in testing DM with masses up to about $1$ TeV.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (90)
  1. G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380.
  2. L. Bergström, “Nonbaryonic dark matter: Observational evidence and detection methods,” Rept. Prog. Phys. 63 (2000) 793, arXiv:hep-ph/0002126.
  3. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175 [hep-ph].
  4. J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48 (2010) 495–545, arXiv:1003.0904 [astro-ph.CO].
  5. M. Beltran, D. Hooper, E. W. Kolb, Z. A. C. Krusberg, and T. M. P. Tait, “Maverick dark matter at colliders,” JHEP 09 (2010) 037, arXiv:1002.4137 [hep-ph].
  6. L. M. Carpenter, A. Nelson, C. Shimmin, T. M. P. Tait, and D. Whiteson, “Collider searches for dark matter in events with a Z boson and missing energy,” Phys. Rev. D 87 (2013) no. 7, 074005, arXiv:1212.3352 [hep-ex].
  7. N. F. Bell, J. B. Dent, A. J. Galea, T. D. Jacques, L. M. Krauss, and T. J. Weiler, “Searching for Dark Matter at the LHC with a Mono-Z,” Phys. Rev. D 86 (2012) 096011, arXiv:1209.0231 [hep-ph].
  8. A. Berlin, T. Lin, and L.-T. Wang, “Mono-Higgs Detection of Dark Matter at the LHC,” JHEP 06 (2014) 078, arXiv:1402.7074 [hep-ph].
  9. S.-M. Choi, Y.-J. Kang, H. M. Lee, and T.-G. Ro, “Lepto-Quark Portal Dark Matter,” JHEP 10 (2018) 104, arXiv:1807.06547 [hep-ph].
  10. K. A. Mohan, D. Sengupta, T. M. P. Tait, B. Yan, and C. P. Yuan, “Direct detection and LHC constraints on a t𝑡titalic_t-channel simplified model of Majorana dark matter at one loop,” JHEP 05 (2019) 115, arXiv:1903.05650 [hep-ph].
  11. B. Belfatto, D. Buttazzo, C. Gross, P. Panci, A. Strumia, N. Vignaroli, L. Vittorio, and R. Watanabe, “Dark Matter abundance via thermal decays and leptoquark mediators,” JHEP 06 (2022) 084, arXiv:2111.14808 [hep-ph].
  12. J. Liu, B. Shuve, N. Weiner, and I. Yavin, “Looking for new charged states at the LHC: Signatures of Magnetic and Rayleigh Dark Matter,” JHEP 07 (2013) 144, arXiv:1303.4404 [hep-ph].
  13. Y. Bai and J. Berger, “Lepton Portal Dark Matter,” JHEP 08 (2014) 153, arXiv:1402.6696 [hep-ph].
  14. S. Chang, R. Edezhath, J. Hutchinson, and M. Luty, “Leptophilic Effective WIMPs,” Phys. Rev. D 90 (2014) no. 1, 015011, arXiv:1402.7358 [hep-ph].
  15. P. Agrawal, Z. Chacko, and C. B. Verhaaren, “Leptophilic Dark Matter and the Anomalous Magnetic Moment of the Muon,” JHEP 08 (2014) 147, arXiv:1402.7369 [hep-ph].
  16. M. Garny, A. Ibarra, and S. Vogl, “Signatures of Majorana dark matter with t-channel mediators,” Int. J. Mod. Phys. D 24 (2015) no. 07, 1530019, arXiv:1503.01500 [hep-ph].
  17. A. Jueid, S. Nasri, and R. Soualah, “Searching for GeV-scale Majorana Dark Matter: inter spem et metum,” JHEP 04 (2021) 012, arXiv:2006.01348 [hep-ph].
  18. S.-I. Horigome, T. Katayose, S. Matsumoto, and I. Saha, “Leptophilic fermion WIMP: Role of future lepton colliders,” Phys. Rev. D 104 (2021) no. 5, 055001, arXiv:2102.08645 [hep-ph].
  19. J. Liu, X.-P. Wang, and K.-P. Xie, “Searching for lepton portal dark matter with colliders and gravitational waves,” JHEP 06 (2021) 149, arXiv:2104.06421 [hep-ph].
  20. J. P. Delahaye, M. Diemoz, K. Long, B. Mansoulié, N. Pastrone, L. Rivkin, D. Schulte, A. Skrinsky, and A. Wulzer, “Muon Colliders,” arXiv:1901.06150 [physics.acc-ph].
  21. K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte, and V. Shiltsev, “Muon colliders to expand frontiers of particle physics,” Nature Phys. 17 (2021) no. 3, 289–292, arXiv:2007.15684 [physics.acc-ph].
  22. A. Costantini, F. De Lillo, F. Maltoni, L. Mantani, O. Mattelaer, R. Ruiz, and X. Zhao, “Vector boson fusion at multi-TeV muon colliders,” JHEP 09 (2020) 080, arXiv:2005.10289 [hep-ph].
  23. R. Ruiz, A. Costantini, F. Maltoni, and O. Mattelaer, “The Effective Vector Boson Approximation in high-energy muon collisions,” JHEP 06 (2022) 114, arXiv:2111.02442 [hep-ph].
  24. R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “Discovering the physics of (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT at future muon colliders,” Phys. Rev. D 103 (2021) no. 7, 075028, arXiv:2006.16277 [hep-ph].
  25. M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini, and X. Zhao, “Measuring the quartic Higgs self-coupling at a multi-TeV muon collider,” JHEP 09 (2020) 098, arXiv:2003.13628 [hep-ph].
  26. T. Han, Y. Ma, and K. Xie, “High energy leptonic collisions and electroweak parton distribution functions,” Phys. Rev. D 103 (2021) no. 3, L031301, arXiv:2007.14300 [hep-ph].
  27. T. Han, Z. Liu, L.-T. Wang, and X. Wang, “WIMPs at High Energy Muon Colliders,” Phys. Rev. D 103 (2021) no. 7, 075004, arXiv:2009.11287 [hep-ph].
  28. W. Yin and M. Yamaguchi, “Muon g-2 at a multi-TeV muon collider,” Phys. Rev. D 106 (2022) no. 3, 033007, arXiv:2012.03928 [hep-ph].
  29. G.-y. Huang, F. S. Queiroz, and W. Rodejohann, “Gauged Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}{-}L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT at a muon collider,” Phys. Rev. D 103 (2021) no. 9, 095005, arXiv:2101.04956 [hep-ph].
  30. R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, “No-lose theorem for discovering the new physics of (g-2)μ𝜇\muitalic_μ at muon colliders,” Phys. Rev. D 105 (2022) no. 1, 015028, arXiv:2101.10334 [hep-ph].
  31. R. Capdevilla, F. Meloni, R. Simoniello, and J. Zurita, “Hunting wino and higgsino dark matter at the muon collider with disappearing tracks,” JHEP 06 (2021) 133, arXiv:2102.11292 [hep-ph].
  32. P. Asadi, R. Capdevilla, C. Cesarotti, and S. Homiller, “Searching for leptoquarks at future muon colliders,” JHEP 10 (2021) 182, arXiv:2104.05720 [hep-ph].
  33. M. Casarsa, M. Fabbrichesi, and E. Gabrielli, “Monochromatic single photon events at the muon collider,” Phys. Rev. D 105 (2022) no. 7, 075008, arXiv:2111.13220 [hep-ph].
  34. W. Liu, K.-P. Xie, and Z. Yi, “Testing leptogenesis at the LHC and future muon colliders: A Z’ scenario,” Phys. Rev. D 105 (2022) no. 9, 095034, arXiv:2109.15087 [hep-ph].
  35. T. Han, S. Li, S. Su, W. Su, and Y. Wu, “Heavy Higgs bosons in 2HDM at a muon collider,” Phys. Rev. D 104 (2021) no. 5, 055029, arXiv:2102.08386 [hep-ph].
  36. T. Han, Y. Ma, and K. Xie, “Quark and gluon contents of a lepton at high energies,” JHEP 02 (2022) 154, arXiv:2103.09844 [hep-ph].
  37. T. Han, W. Kilian, N. Kreher, Y. Ma, J. Reuter, T. Striegl, and K. Xie, “Precision test of the muon-Higgs coupling at a high-energy muon collider,” JHEP 12 (2021) 162, arXiv:2108.05362 [hep-ph].
  38. G.-S. Lv, X.-M. Cui, Y.-Q. Li, and Y.-B. Liu, “Pair production of the vectorlike top partner at future muon collider,” Nucl. Phys. B 985 (2022) 116016.
  39. J. Liu, Z.-L. Han, Y. Jin, and H. Li, “Unraveling the Scotogenic model at muon collider,” JHEP 12 (2022) 057, arXiv:2207.07382 [hep-ph].
  40. A. Azatov, F. Garosi, A. Greljo, D. Marzocca, J. Salko, and S. Trifinopoulos, “New physics in b → sμ𝜇\muitalic_μμ𝜇\muitalic_μ: FCC-hh or a muon collider?,” JHEP 10 (2022) 149, arXiv:2205.13552 [hep-ph].
  41. J.-C. Yang, X.-Y. Han, Z.-B. Qin, T. Li, and Y.-C. Guo, “Measuring the anomalous quartic gauge couplings in the W+⁢W−→W+⁢W−→superscript𝑊superscript𝑊superscript𝑊superscript𝑊W^{+}W^{-}\to W^{+}W^{-}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT process at muon collider using artificial neural networks,” JHEP 09 (2022) 074, arXiv:2204.10034 [hep-ph].
  42. Y. Bao, J. Fan, and L. Li, “Electroweak ALP searches at a muon collider,” JHEP 08 (2022) 276, arXiv:2203.04328 [hep-ph].
  43. S. Chen, A. Glioti, R. Rattazzi, L. Ricci, and A. Wulzer, “Learning from radiation at a very high energy lepton collider,” JHEP 05 (2022) 180, arXiv:2202.10509 [hep-ph].
  44. S. Baum, P. Sandick, and P. Stengel, “Hunting for scalar lepton partners at future electron colliders,” Phys. Rev. D 102 (2020) no. 1, 015026, arXiv:2004.02834 [hep-ph].
  45. B. Swiezewska and M. Krawczyk, “Diphoton rate in the inert doublet model with a 125 GeV Higgs boson,” Phys. Rev. D 88 (2013) no. 3, 035019, arXiv:1212.4100 [hep-ph].
  46. A. Arhrib, R. Benbrik, and N. Gaur, “H→γ⁢γ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ in Inert Higgs Doublet Model,” Phys. Rev. D85 (2012) 095021, arXiv:1201.2644 [hep-ph].
  47. A. Jueid, J. Kim, S. Lee, S. Y. Shim, and J. Song, “Phenomenology of the Inert Doublet Model with a global U(1) symmetry,” Phys. Rev. D 102 (2020) no. 7, 075011, arXiv:2006.10263 [hep-ph].
  48. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034 [hep-ph].
  49. S. Kanemura, T. Kubota, and E. Takasugi, “Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model,” Phys. Lett. B313 (1993) 155–160, arXiv:hep-ph/9303263 [hep-ph].
  50. A. G. Akeroyd, A. Arhrib, and E.-M. Naimi, “Note on tree level unitarity in the general two Higgs doublet model,” Phys. Lett. B490 (2000) 119–124, arXiv:hep-ph/0006035 [hep-ph].
  51. I. F. Ginzburg, K. A. Kanishev, M. Krawczyk, and D. Sokolowska, “Evolution of Universe to the present inert phase,” Phys. Rev. D82 (2010) 123533, arXiv:1009.4593 [hep-ph].
  52. L. M. Krauss, S. Nasri, and M. Trodden, “A Model for neutrino masses and dark matter,” Phys. Rev. D 67 (2003) 085002, arXiv:hep-ph/0210389.
  53. E. Ma, “Verifiable radiative seesaw mechanism of neutrino mass and dark matter,” Phys. Rev. D73 (2006) 077301, arXiv:hep-ph/0601225 [hep-ph].
  54. A. Ahriche, A. Jueid, and S. Nasri, “Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model,” Phys. Rev. D97 (2018) no. 9, 095012, arXiv:1710.03824 [hep-ph].
  55. S. Baumholzer, V. Brdar, and P. Schwaller, “The New ν𝜈\nuitalic_νMSM (ν⁢ν𝜈𝜈\nu\nuitalic_ν italic_νMSM): Radiative Neutrino Masses, keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New Physics,” JHEP 08 (2018) 067, arXiv:1806.06864 [hep-ph].
  56. D. Borah, P. S. B. Dev, and A. Kumar, “TeV scale leptogenesis, inflaton dark matter and neutrino mass in a scotogenic model,” Phys. Rev. D 99 (2019) no. 5, 055012, arXiv:1810.03645 [hep-ph].
  57. T. Kitabayashi, “Scotogenic dark matter and single-zero textures of the neutrino mass matrix,” Phys. Rev. D 98 (2018) no. 8, 083011, arXiv:1808.01060 [hep-ph].
  58. A. Ahriche, A. Arhrib, A. Jueid, S. Nasri, and A. de La Puente, “Mono-Higgs Signature in the Scotogenic Model with Majorana Dark Matter,” Phys. Rev. D 101 (2020) no. 3, 035038, arXiv:1811.00490 [hep-ph].
  59. S. Baumholzer, V. Brdar, P. Schwaller, and A. Segner, “Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology,” JHEP 09 (2020) 136, arXiv:1912.08215 [hep-ph].
  60. D. Borah, A. Dasgupta, K. Fujikura, S. K. Kang, and D. Mahanta, “Observable Gravitational Waves in Minimal Scotogenic Model,” JCAP 08 (2020) 046, arXiv:2003.02276 [hep-ph].
  61. M. Sarazin, J. Bernigaud, and B. Herrmann, “Dark matter and lepton flavour phenomenology in a singlet-doublet scotogenic model,” arXiv:2107.04613 [hep-ph].
  62. J. Hisano, T. Moroi, K. Tobe, and M. Yamaguchi, “Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model,” Phys. Rev. D 53 (1996) 2442–2459, arXiv:hep-ph/9510309.
  63. E. Arganda and M. J. Herrero, “Testing supersymmetry with lepton flavor violating tau and mu decays,” Phys. Rev. D 73 (2006) 055003, arXiv:hep-ph/0510405.
  64. A. Ilakovac, A. Pilaftsis, and L. Popov, “Charged lepton flavor violation in supersymmetric low-scale seesaw models,” Phys. Rev. D 87 (2013) no. 5, 053014, arXiv:1212.5939 [hep-ph].
  65. T. Toma and A. Vicente, “Lepton Flavor Violation in the Scotogenic Model,” JHEP 01 (2014) 160, arXiv:1312.2840 [hep-ph].
  66. Belle, Belle-II Collaboration, K. Hayasaka, “Results and prospects on lepton flavor violation at Belle/Belle II,” J. Phys. Conf. Ser. 408 (2013) 012069.
  67. J. Herrero-Garcia, N. Rius, and A. Santamaria, “Higgs lepton flavour violation: UV completions and connection to neutrino masses,” JHEP 11 (2016) 084, arXiv:1605.06091 [hep-ph].
  68. R. J. Scherrer and M. S. Turner, “On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles,” Phys. Rev. D 33 (1986) 1585. [Erratum: Phys.Rev.D 34, 3263 (1986)].
  69. K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,” Phys. Rev. D43 (1991) 3191–3203.
  70. F. Ambrogi, C. Arina, M. Backovic, J. Heisig, F. Maltoni, L. Mantani, O. Mattelaer, and G. Mohlabeng, “MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies,” Phys. Dark Univ. 24 (2019) 100249, arXiv:1804.00044 [hep-ph].
  71. M. Cirelli, E. Del Nobile, and P. Panci, “Tools for model-independent bounds in direct dark matter searches,” JCAP 10 (2013) 019, arXiv:1307.5955 [hep-ph].
  72. R. J. Hill and M. P. Solon, “Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements,” Phys. Rev. D 91 (2015) 043505, arXiv:1409.8290 [hep-ph].
  73. F. Bishara, J. Brod, B. Grinstein, and J. Zupan, “From quarks to nucleons in dark matter direct detection,” JHEP 11 (2017) 059, arXiv:1707.06998 [hep-ph].
  74. J. Ellis, N. Nagata, and K. A. Olive, “Uncertainties in WIMP Dark Matter Scattering Revisited,” Eur. Phys. J. C 78 (2018) no. 7, 569, arXiv:1805.09795 [hep-ph].
  75. J. Billard, L. Strigari, and E. Figueroa-Feliciano, “Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments,” Phys. Rev. D 89 (2014) no. 2, 023524, arXiv:1307.5458 [hep-ph].
  76. M. Backović, A. Martini, O. Mattelaer, K. Kong, and G. Mohlabeng, “Direct Detection of Dark Matter with MadDM v.2.0,” Phys. Dark Univ. 9-10 (2015) 37–50, arXiv:1505.04190 [hep-ph].
  77. H. H. Patel, “Package-X: A Mathematica package for the analytic calculation of one-loop integrals,” Comput. Phys. Commun. 197 (2015) 276–290, arXiv:1503.01469 [hep-ph].
  78. G. Passarino and M. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B 160 (1979) 151–207.
  79. T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and D-dimensions,” Comput. Phys. Commun. 118 (1999) 153–165, arXiv:hep-ph/9807565 [hep-ph].
  80. T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys. Commun. 140 (2001) 418–431, arXiv:hep-ph/0012260 [hep-ph].
  81. G. Belanger, B. Dumont, U. Ellwanger, J. F. Gunion, and S. Kraml, “Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors,” Phys. Rev. D 88 (2013) 075008, arXiv:1306.2941 [hep-ph].
  82. J. Ellis and T. You, “Updated Global Analysis of Higgs Couplings,” JHEP 06 (2013) 103, arXiv:1303.3879 [hep-ph].
  83. CMS Collaboration Collaboration, “Projected performance of Higgs analyses at the HL-LHC for ECFA 2016,” Tech. Rep. CMS-PAS-FTR-16-002, CERN, Geneva, 2017. https://cds.cern.ch/record/2266165.
  84. O. Cerri, M. de Gruttola, M. Pierini, A. Podo, and G. Rolandi, “Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT e−{}^{-}start_FLOATSUPERSCRIPT - end_FLOATSUPERSCRIPT circular collider,” Eur. Phys. J. C 77 (2017) no. 2, 116, arXiv:1605.00100 [hep-ex].
  85. 2013. arXiv:1310.0763 [hep-ph]. http://inspirehep.net/record/1256491/files/arXiv:1310.0763.pdf.
  86. M. Selvaggi, “Higgs measurements at the FCC-hh,” PoS ICHEP2018 (2019) 684.
  87. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].
  88. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, “UFO - The Universal FeynRules Output,” Comput. Phys. Commun. 183 (2012) 1201–1214, arXiv:1108.2040 [hep-ph].
  89. A. Jueid and S. Nasri, “Work in progress,”.
  90. M. Belfkir, A. Jueid, and S. Nasri, “Work in progress,”.
Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)