Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stress Tensor Flows, Birefringence in Non-Linear Electrodynamics, and Supersymmetry (2301.10411v3)

Published 25 Jan 2023 in hep-th, gr-qc, math-ph, and math.MP

Abstract: We identify the unique stress tensor deformation which preserves zero-birefringence conditions in non-linear electrodynamics, which is a $4d$ version of the ${T\overline{T}}$ operator. We study the flows driven by this operator in the three Lagrangian theories without birefringence -- Born-Infeld, Plebanski, and reverse Born-Infeld -- all of which admit ModMax-like generalizations using a root-${T\overline{T}}$-like flow that we analyse in our paper. We demonstrate one way of making this root-${T\overline{T}}$-like flow manifestly supersymmetric by writing the deforming operator in $\mathcal{N} = 1$ superspace and exhibit two examples of superspace flows. We present scalar analogues in $d = 2$ with similar properties as these theories of electrodynamics in $d = 4$. Surprisingly, the Plebanski-type theories are fixed points of the classical ${T\overline{T}}$-like flows, while the Born-Infeld-type examples satisfy new flow equations driven by relevant operators constructed from the stress tensor. Finally, we prove that any theory obtained from a classical stress-tensor-squared deformation of a conformal field theory gives rise to a related ``subtracted'' theory for which the stress-tensor-squared operator is a constant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (98)
  1. A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quantum field theory,” hep-th/0401146.
  2. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B915 (2017) 363–383, 1608.05499.
  3. A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, 1608.05534.
  4. S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017) 136, 1706.06604.
  5. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, 1801.06895.
  6. S. Datta and Y. Jiang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, 1806.07426.
  7. O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, 1808.02492.
  8. J. Cardy, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation of correlation functions,” JHEP 12 (2019) 160, 1907.03394.
  9. P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, 1801.02714.
  10. M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli, and H. Walsh, “On T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and supersymmetry,” JHEP 06 (2019) 063, 1811.00533.
  11. C.-K. Chang, C. Ferko, and S. Sethi, “Supersymmetry and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations,” JHEP 04 (2019) 131, 1811.01895.
  12. H. Jiang, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations with 𝒩=(0,2)𝒩02\mathcal{N}=(0,2)caligraphic_N = ( 0 , 2 ) supersymmetry,” Phys. Rev. D100 (2019), no. 4, 046017, 1904.04760.
  13. C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini, and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows and (2,2) supersymmetry,” Phys. Rev. D 101 (2020), no. 2, 026008, 1906.00467.
  14. E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman, and R. M. Soni, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry,” JHEP 10 (2019) 080, 1906.05439.
  15. C. Ferko, H. Jiang, S. Sethi, and G. Tartaglino-Mazzucchelli, “Non-linear supersymmetry and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows,” JHEP 02 (2020) 016, 1910.01599.
  16. PhD thesis, Chicago U., 2021. 2112.14647.
  17. S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations of supersymmetric quantum mechanics,” JHEP 08 (2022) 121, 2204.05897.
  18. J. Kruthoff and O. Parrikar, “On the flow of states under T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” 2006.03054.
  19. M. Guica and R. Monten, “Infinite pseudo-conformal symmetries of classical T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG and J⁢Ta𝐽subscript𝑇𝑎JT_{a}italic_J italic_T start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - deformed CFTs,” SciPost Phys. 11 (2021) 078, 2011.05445.
  20. S. Georgescu and M. Guica, “Infinite T⁢T¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-like symmetries of compactified LST,” 2212.09768.
  21. M. Guica, R. Monten, and I. Tsiares, “Classical and quantum symmetries of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” 2212.14014.
  22. Y. Jiang, “A pedagogical review on solvable irrelevant deformations of 2D quantum field theory,” Commun. Theor. Phys. 73 (2021), no. 5, 057201, 1904.13376.
  23. M. Guica, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations and holography,” CERN Winter School on Supergravity, Strings and Gauge Theory (2020).
  24. A. Giveon, N. Itzhaki, and D. Kutasov, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST,” JHEP 07 (2017) 122, 1701.05576.
  25. A. Giveon, N. Itzhaki, and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 12 (2017) 155, 1707.05800.
  26. M. Asrat, A. Giveon, N. Itzhaki, and D. Kutasov, “Holography Beyond AdS,” Nucl. Phys. B932 (2018) 241–253, 1711.02690.
  27. M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations,” Phys. Rev. D98 (2018), no. 2, 021902, 1804.01998.
  28. S. Frolov, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation and the Light-Cone Gauge,” Proc. Steklov Inst. Math. 309 (2020) 107–126, 1905.07946.
  29. N. Callebaut, J. Kruthoff, and H. Verlinde, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, 1910.13578.
  30. G. Bonelli, N. Doroud, and M. Zhu, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form,” JHEP 06 (2018) 149, 1804.10967.
  31. T. D. Brennan, C. Ferko, and S. Sethi, “A Non-Abelian Analogue of DBI from T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” SciPost Phys. 8 (2020), no. 4, 052, 1912.12389.
  32. C. Ferko, Y. Hu, Z. Huang, K. Koutrolikos, and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-Like Flows and 3⁢d3𝑑3d3 italic_d Nonlinear Supersymmetry,” 2302.10410.
  33. Y. Hu and K. Koutrolikos, “Nonlinear N=2 supersymmetry and 3D supersymmetric Born-Infeld theory,” Nucl. Phys. B 984 (2022) 115970, 2206.01607.
  34. R. Conti, L. Iannella, S. Negro, and R. Tateo, “Generalised Born-Infeld models, Lax operators and the T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation,” JHEP 11 (2018) 007, 1806.11515.
  35. C. Ferko, A. Sfondrini, L. Smith, and G. Tartaglino-Mazzucchelli, “Root-T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories,” Phys. Rev. Lett. 129 (2022), no. 20, 201604, 2206.10515.
  36. P. Rodriguez, D. Tempo, and R. Troncoso, “Mapping relativistic to ultra/non-relativistic conformal symmetries in 2D and finite T⁢T¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 11 (2021) 133, 2106.09750.
  37. A. Bagchi, A. Banerjee, and H. Muraki, “Boosting to BMS,” JHEP 09 (2022) 251, 2205.05094.
  38. R. Conti, J. Romano, and R. Tateo, “Metric approach to a T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions,” JHEP 09 (2022) 085, 2206.03415.
  39. H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta, and H. Mohammadzadeh, “Marginal T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like deformation and modified Maxwell theories in two dimensions,” Phys. Rev. D 106 (2022), no. 8, 086022, 2206.12677.
  40. J. Hou, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flow as characteristic flows,” 2208.05391.
  41. J. A. Garcia and R. A. Sanchez-Isidro, “T⁢T¯𝑇¯𝑇\sqrt{T\bar{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG-deformed oscillator inspired by ModMax,” 2209.06296.
  42. D. Tempo and R. Troncoso, “Nonlinear automorphism of the conformal algebra in 2D and continuous T⁢T¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations,” JHEP 12 (2022) 129, 2210.00059.
  43. R. Borsato, C. Ferko, and A. Sfondrini, “On the Classical Integrability of Root-T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Flows,” 2209.14274.
  44. I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102 (2020) 121703, 2007.09092.
  45. I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03 (2021) 022, 2012.09286.
  46. S. M. Kuzenko, “Superconformal duality-invariant models and 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM effective action,” JHEP 09 (2021) 180, 2106.07173.
  47. I. Bandos, K. Lechner, D. Sorokin, and P. K. Townsend, “ModMax meets Susy,” JHEP 10 (2021) 031, 2106.07547.
  48. H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations,” 2202.11156.
  49. C. Ferko, L. Smith, and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories,” SciPost Phys. 13 (2022), no. 2, 012, 2203.01085.
  50. D. P. Sorokin, “Introductory Notes on Non-linear Electrodynamics and its Applications,” Fortsch. Phys. 70 (2022), no. 7-8, 2200092, 2112.12118.
  51. V. Gorbenko, E. Silverstein, and G. Torroba, “dS/dS and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2019) 085, 1811.07965.
  52. E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba, and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition,” JHEP 07 (2022) 140, 2110.14670.
  53. G. Torroba, “T⁢T¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from a 2d gravity path integral,” 2212.04512.
  54. A. LeClair, “Mingling of the infrared and ultraviolet and the ”cosmological constant” for interacting QFT in 2d,” 2301.09019.
  55. L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, 1611.03470.
  56. P. Kraus, R. Monten, and R. M. Myers, “3D Gravity in a Box,” SciPost Phys. 11 (2021) 070, 2103.13398.
  57. S. Ebert, E. Hijano, P. Kraus, R. Monten, and R. M. Myers, “Field Theory of Interacting Boundary Gravitons,” SciPost Phys. 13 (2022), no. 2, 038, 2201.01780.
  58. P. Kraus, R. Monten, and K. Roumpedakis, “Refining the cutoff 3d gravity/T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG correspondence,” JHEP 10 (2022) 094, 2206.00674.
  59. P. Aschieri and S. Ferrara, “Constitutive relations and Schroedinger’s formulation of nonlinear electromagnetic theories,” JHEP 05 (2013) 087, 1302.4737.
  60. H. Babaei-Aghbolagh, K. Babaei Velni, D. M. Yekta, and H. Mohammadzadeh, “Manifestly SL(2, R) Duality-Symmetric Forms in ModMax Theory,” JHEP 12 (2022) 147, 2210.13196.
  61. J. Plebanski, “LECTURES ON NON-LINEAR ELECTRODYNAMICS, COPENHAGEN, 1968.,” (1, 1970).
  62. M. Taylor, “TT deformations in general dimensions,” 1805.10287.
  63. M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 (1934), no. 852, 425–451.
  64. I. Bialynicki-Birula, “NONLINEAR ELECTRODYNAMICS: VARIATIONS ON A THEME BY BORN AND INFELD,”.
  65. G. Boillat, “Vitesses des ondes électrodynamiques et lagrangiens exceptionnels,” Ann. Inst. H. Poincare Phys. Theor. 5 (1966), no. 3, 217–225.
  66. G. Boillat, “Nonlinear Electrodynamics: Lagrangians and Equations of Motion,” Journal of Mathematical Physics 11 (1970), no. 3, 941–951, https://doi.org/10.1063/1.1665231.
  67. S. Deser, J. G. McCarthy, and O. Sarioglu, “’Good propagation’ constraints on dual invariant actions in electrodynamics and on massless fields,” Class. Quant. Grav. 16 (1999) 841–847, hep-th/9809153.
  68. J. G. McCarthy and O. Sarioglu, “Shock free wave propagation in gauge theories,” Int. J. Theor. Phys. 39 (2000) 159–182, math-ph/9902004.
  69. J. G. Russo and P. K. Townsend, “Nonlinear Electrodynamics without Birefringence,” 2211.10689.
  70. C. Ferko, S. M. Kuzenko, L. Smith, and G. Tartaglino-Mazzucchelli, “Duality-Invariant Non-linear Electrodynamics and Stress Tensor Flows,” 2309.04253.
  71. M. K. Gaillard and B. Zumino, “Duality Rotations for Interacting Fields,” Nucl. Phys. B 193 (1981) 221–244.
  72. G. W. Gibbons and D. A. Rasheed, “Electric - magnetic duality rotations in nonlinear electrodynamics,” Nucl. Phys. B 454 (1995) 185–206, hep-th/9506035.
  73. M. K. Gaillard and B. Zumino, “Nonlinear electromagnetic selfduality and Legendre transformations,” in A Newton Institute Euroconference on Duality and Supersymmetric Theories, pp. 33–48. 12, 1997. hep-th/9712103.
  74. M. K. Gaillard and B. Zumino, “Selfduality in nonlinear electromagnetism,” Lect. Notes Phys. 509 (1998) 121, hep-th/9705226.
  75. M. Hatsuda, K. Kamimura, and S. Sekiya, “Electric magnetic duality invariant Lagrangians,” Nucl. Phys. B 561 (1999) 341–353, hep-th/9906103.
  76. S. M. Kuzenko and S. Theisen, “Supersymmetric duality rotations,” JHEP 03 (2000) 034, hep-th/0001068.
  77. X. Bekaert and S. Cucu, “Deformations of duality symmetric theories,” Nucl. Phys. B 610 (2001) 433–460, hep-th/0104048.
  78. E. A. Ivanov and B. M. Zupnik, “New representation for Lagrangians of selfdual nonlinear electrodynamics,” in Supersymmetries and Quantum Symmetries. Proceedings, 16th Max Born Symposium, SQS’01: Karpacz, Poland, September 21-25, 2001, pp. 235–250. 2002. hep-th/0202203.
  79. E. A. Ivanov and B. M. Zupnik, “New approach to nonlinear electrodynamics: Dualities as symmetries of interaction,” Phys. Atom. Nucl. 67 (2004) 2188–2199, hep-th/0303192.
  80. S. M. Kuzenko, “Manifestly duality-invariant interactions in diverse dimensions,” Phys. Lett. B 798 (2019) 134995, 1908.04120.
  81. P. Aschieri, S. Ferrara, and B. Zumino, “Three lectures on electric-magnetic duality,” SFIN A 1 (2009) 1–42.
  82. S. M. Kuzenko and E. S. N. Raptakis, “Duality-invariant superconformal higher-spin models,” Phys. Rev. D 104 (2021), no. 12, 125003, 2107.02001.
  83. J. Bagger and A. Galperin, “A New Goldstone multiplet for partially broken supersymmetry,” Phys. Rev. D55 (1997) 1091–1098, hep-th/9608177.
  84. S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent,” Nucl. Phys. B87 (1975) 207.
  85. S. M. Kuzenko and S. A. McCarthy, “Nonlinear selfduality and supergravity,” JHEP 02 (2003) 038, hep-th/0212039.
  86. S. M. Kuzenko and S. Theisen, “Nonlinear selfduality and supersymmetry,” Fortsch. Phys. 49 (2001) 273–309, hep-th/0007231.
  87. Y. Jiang, “Expectation value of T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG operator in curved spacetimes,” JHEP 02 (2020) 094, 1903.07561.
  88. T. D. Brennan, C. Ferko, E. Martinec, and S. Sethi, “Defining the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation on AdS2subscriptAdS2\mathrm{AdS}_{2}roman_AdS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” 2005.00431.
  89. H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta, and H. Mohammadzadeh, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows in non-linear electrodynamic theories and S-duality,” JHEP 04 (2021) 187, 2012.13636.
  90. Z. Avetisyan, O. Evnin, and K. Mkrtchyan, “Democratic Lagrangians for Nonlinear Electrodynamics,” Phys. Rev. Lett. 127 (2021), no. 27, 271601, 2108.01103.
  91. Z. Avetisyan, O. Evnin, and K. Mkrtchyan, “Nonlinear (chiral) p-form electrodynamics,” JHEP 08 (2022) 112, 2205.02522.
  92. S. Ebert, H.-Y. Sun, and Z. Sun, “TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG deformation in SCFTs and integrable supersymmetric theories,” JHEP 09 (2021) 082, 2011.07618.
  93. K. Lechner, P. Marchetti, A. Sainaghi, and D. P. Sorokin, “Maximally symmetric nonlinear extension of electrodynamics and charged particles,” Phys. Rev. D 106 (2022), no. 1, 016009, 2206.04657.
  94. M. Guica and R. Monten, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 (2021), no. 2, 024, 1906.11251.
  95. G. Araujo-Regado, R. Khan, and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary,” 2204.00591.
  96. S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “Root-T⁢T¯𝑇¯𝑇{T\mkern 1.5mu\overline{\mkern-1.5muT\mkern-1.5mu}\mkern 1.5mu}italic_T over¯ start_ARG italic_T end_ARG Deformed Boundary Conditions in Holography.,” To appear. (2023) 23xx.xxxxx.
  97. S. Ebert, C. Ferko, H.-Y. Sun, and Z. Sun, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG in JT Gravity and BF Gauge Theory,” SciPost Phys. 13 (2022), no. 4, 096, 2205.07817.
  98. C. Ferko and S. Sethi, “Sequential Flows by Irrelevant Operators,” 2206.04787.
Citations (9)

Summary

We haven't generated a summary for this paper yet.