Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$T \overline{T}$-Like Flows and $3d$ Nonlinear Supersymmetry (2302.10410v4)

Published 21 Feb 2023 in hep-th, gr-qc, math-ph, and math.MP

Abstract: We show that the $3d$ Born-Infeld theory can be generated via an irrelevant deformation of the free Maxwell theory. The deforming operator is constructed from the energy-momentum tensor and includes a novel non-analytic contribution that resembles root-$T \overline{T}$. We find that a similar operator deforms a free scalar into the scalar sector of the Dirac-Born-Infeld action, which describes transverse fluctuations of a D-brane, in any dimension. We also analyse trace flow equations and obtain flows for subtracted models driven by a relevant operator. In $3d$, the irrelevant deformation can be made manifestly supersymmetric by presenting the flow equation in $\mathcal{N} = 1$ superspace, where the deforming operator is built from supercurrents. We demonstrate that two supersymmetric presentations of the D2-brane effective action, the Maxwell-Goldstone multiplet and the tensor-Goldstone multiplet, satisfy superspace flow equations driven by this supercurrent combination. To do this, we derive expressions for the supercurrents in general classes of vector and tensor/scalar models by directly solving the superspace conservation equations and also by coupling to $\mathcal{N} = 1$ supergravity. As both of these multiplets exhibit a second, spontaneously broken supersymmetry, this analysis provides further evidence for a connection between current-squared deformations and nonlinearly realized symmetries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (102)
  1. R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, Journal of Differential Geometry 17[2] (1982) 255 .
  2. A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quantum field theory”, arXiv:hep-th/0401146.
  3. A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories”, JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].
  4. J. Kruthoff and O. Parrikar, “On the flow of states under T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, arXiv:2006.03054 [hep-th].
  5. M. Guica and R. Monten, “Infinite pseudo-conformal symmetries of classical T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG and J⁢Ta𝐽subscript𝑇𝑎JT_{a}italic_J italic_T start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - deformed CFTs”, SciPost Phys. 11 (2021) 078, arXiv:2011.05445 [hep-th].
  6. S. Georgescu and M. Guica, “Infinite T⁢T¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-like symmetries of compactified LST”, arXiv:2212.09768 [hep-th].
  7. M. Guica, R. Monten and I. Tsiares, “Classical and quantum symmetries of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs”, arXiv:2212.14014 [hep-th].
  8. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories”, Nucl. Phys. B915 (2017) 363, arXiv:1608.05499 [hep-th].
  9. B. Chen, J. Hou and J. Tian, “Lax connections in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed integrable field theories”, Chin. Phys. C 45[9] (2021) 093112, arXiv:2102.01470 [hep-th].
  10. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry”, JHEP 10 (2018) 186, arXiv:1801.06895 [hep-th].
  11. S. Dubovsky, V. Gorbenko and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 09 (2017) 136, arXiv:1706.06604 [hep-th].
  12. S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity”, JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].
  13. S. Dubovsky, S. Negro and M. Porrati, “Topological Gauging and Double Current Deformations”, arXiv:2302.01654 [hep-th].
  14. R. Conti, S. Negro and R. Tateo, “The T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation”, JHEP 02 (2019) 085, arXiv:1809.09593 [hep-th].
  15. R. Conti, S. Negro and R. Tateo, “Conserved currents and T⁢T¯sTsubscript¯T𝑠\text{T}\bar{\text{T}}_{s}T over¯ start_ARG T end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT irrelevant deformations of 2D integrable field theories”, arXiv:1904.09141 [hep-th].
  16. P. Caputa, P. Caputa, S. Datta, S. Datta, Y. Jiang, Y. Jiang, P. Kraus and P. Kraus, “Geometrizing T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 03 (2021) 140, [Erratum: JHEP 09, 110 (2022)], arXiv:2011.04664 [hep-th].
  17. R. Conti, J. Romano and R. Tateo, “Metric approach to a T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions”, JHEP 09 (2022) 085, arXiv:2206.03415 [hep-th].
  18. F. Aramini, N. Brizio, S. Negro and R. Tateo, “Deforming the ODE/IM correspondence with T⁢T¯T¯T\mathrm{T}\bar{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG”, arXiv:2212.13957 [hep-th].
  19. R. R. Metsaev, M. Rakhmanov and A. A. Tseytlin, “The Born-Infeld Action as the Effective Action in the Open Superstring Theory”, Phys. Lett. B193 (1987) 207.
  20. A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory”, 1999, arXiv:hep-th/9908105.
  21. J. Hughes and J. Polchinski, “Partially Broken Global Supersymmetry and the Superstring”, Nucl. Phys. B278 (1986) 147.
  22. J. Hughes, J. Liu and J. Polchinski, “Supermembranes”, Physics Letters B 180[4] (1986) 370, URL.
  23. J. Bagger and A. Galperin, “A New Goldstone multiplet for partially broken supersymmetry”, Phys. Rev. D55 (1997) 1091, arXiv:hep-th/9608177.
  24. M. Rocek and A. A. Tseytlin, “Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions”, Phys. Rev. D59 (1999) 106001, arXiv:hep-th/9811232.
  25. F. Gliozzi, “Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios”, Phys. Rev. D 84 (2011) 027702, arXiv:1103.5377 [hep-th].
  26. R. Casalbuoni, J. Gomis and K. Kamimura, “Space-time transformations of the Born-Infeld gauge field of a D-brane”, Phys. Rev. D 84 (2011) 027901, arXiv:1104.4916 [hep-th].
  27. H. Jiang, A. Sfondrini and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations with 𝒩=(0,2)𝒩02\mathcal{N}=(0,2)caligraphic_N = ( 0 , 2 ) supersymmetry”, Phys. Rev. D100[4] (2019) 046017, arXiv:1904.04760 [hep-th].
  28. N. Cribiori, F. Farakos and R. von Unge, “2D Volkov-Akulov Model as a T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation”, Phys. Rev. Lett. 123[20] (2019) 201601, arXiv:1907.08150 [hep-th].
  29. C. Ferko, H. Jiang, S. Sethi and G. Tartaglino-Mazzucchelli, “Non-linear supersymmetry and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows”, JHEP 02 (2020) 016, arXiv:1910.01599 [hep-th].
  30. Y. Hu and K. Koutrolikos, “Nonlinear 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetry and 3D supersymmetric Born-Infeld theory”, Nucl. Phys. B 984 (2022) 115970, arXiv:2206.01607 [hep-th].
  31. E. Ivanov and S. Krivonos, “N=1𝑁1N=1italic_N = 1 D=2𝐷2D=2italic_D = 2 supermembrane in the coset approach”, Phys. Lett. B 453 (1999) 237, [Erratum: Phys.Lett.B 657, 269 (2007), Erratum: Phys.Lett.B 460, 499–499 (1999)], arXiv:hep-th/9901003.
  32. E. Ivanov, “Superbranes and super Born-Infeld theories as nonlinear realizations”, Theor. Math. Phys. 129 (2001) 1543, arXiv:hep-th/0105210.
  33. C. Ferko, A. Sfondrini, L. Smith and G. Tartaglino-Mazzucchelli, “Root-T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories”, Phys. Rev. Lett. 129[20] (2022) 201604, arXiv:2206.10515 [hep-th].
  34. A. Bagchi, A. Banerjee and H. Muraki, “Boosting to BMS”, JHEP 09 (2022) 251, arXiv:2205.05094 [hep-th].
  35. J. Hou, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flow as characteristic flows”, arXiv:2208.05391 [hep-th].
  36. J. A. Garcia and R. A. Sanchez-Isidro, “T⁢T¯𝑇¯𝑇\sqrt{T\bar{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG-deformed oscillator inspired by ModMax”, arXiv:2209.06296 [hep-th].
  37. D. Tempo and R. Troncoso, “Nonlinear automorphism of the conformal algebra in 2D and continuous T⁢T¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations”, JHEP 12 (2022) 129, arXiv:2210.00059 [hep-th].
  38. S. Ebert, C. Ferko and Z. Sun, “Root-T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed boundary conditions in holography”, Phys. Rev. D 107[12] (2023) 126022, arXiv:2304.08723 [hep-th].
  39. C. Ferko and A. Gupta, “ModMax oscillators and root-T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows in supersymmetric quantum mechanics”, Phys. Rev. D 108[4] (2023) 046013, arXiv:2306.14575 [hep-th].
  40. C. Ferko, A. Gupta and E. Iyer, “Quantization of the ModMax Oscillator”, arXiv:2310.06015 [hep-th].
  41. G. Bonelli, N. Doroud and M. Zhu, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form”, JHEP 06 (2018) 149, arXiv:1804.10967 [hep-th].
  42. I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations”, Phys. Rev. D 102 (2020) 121703, arXiv:2007.09092 [hep-th].
  43. I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “On p-form gauge theories and their conformal limits”, JHEP 03 (2021) 022, arXiv:2012.09286 [hep-th].
  44. I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “ModMax meets Susy”, JHEP 10 (2021) 031, arXiv:2106.07547 [hep-th].
  45. H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations”, arXiv:2202.11156 [hep-th].
  46. C. Ferko, L. Smith and G. Tartaglino-Mazzucchelli, “Stress Tensor Flows, Birefringence in Non-Linear Electrodynamics, and Supersymmetry”, arXiv:2301.10411 [hep-th].
  47. C. Ferko, L. Smith and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories”, SciPost Phys. 13[2] (2022) 012, arXiv:2203.01085 [hep-th].
  48. H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta and H. Mohammadzadeh, “Marginal T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like deformation and modified Maxwell theories in two dimensions”, Phys. Rev. D 106[8] (2022) 086022, arXiv:2206.12677 [hep-th].
  49. R. Borsato, C. Ferko and A. Sfondrini, “On the Classical Integrability of Root-T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Flows”, arXiv:2209.14274 [hep-th].
  50. M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, “On T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and supersymmetry”, JHEP 06 (2019) 063, arXiv:1811.00533 [hep-th].
  51. C.-K. Chang, C. Ferko and S. Sethi, “Supersymmetry and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations”, JHEP 04 (2019) 131, arXiv:1811.01895 [hep-th].
  52. E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman and R. M. Soni, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry”, JHEP 10 (2019) 080, arXiv:1906.05439 [hep-th].
  53. S. He, J.-R. Sun and Y. Sun, “The correlation function of (1,1) and (2,2) supersymmetric theories with T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, JHEP 04 (2020) 100, arXiv:1912.11461 [hep-th].
  54. H. Jiang and G. Tartaglino-Mazzucchelli, “Supersymmetric JT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG and TJ¯¯𝐽\overline{J}over¯ start_ARG italic_J end_ARG deformations”, JHEP 05 (2020) 140, arXiv:1911.05631 [hep-th].
  55. C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini and G. Tartaglino-Mazzucchelli, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows and (2,2) supersymmetry”, Phys. Rev. D 101[2] (2020) 026008, arXiv:1906.00467 [hep-th].
  56. S. Ebert, H.-Y. Sun and Z. Sun, “TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG deformation in SCFTs and integrable supersymmetric theories”, JHEP 09 (2021) 082, arXiv:2011.07618 [hep-th].
  57. K.-S. Lee, P. Yi and J. Yoon, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed fermionic theories revisited”, JHEP 07 (2021) 217, arXiv:2104.09529 [hep-th].
  58. S. He, H. Ouyang and Y. Sun, “Note on T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed matrix models and JT supergravity duals”, arXiv:2204.13636 [hep-th].
  59. S. Ebert, C. Ferko, H.-Y. Sun and Z. Sun, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformations of Supersymmetric Quantum Mechanics”, arXiv:2204.05897 [hep-th].
  60. R. Conti, L. Iannella, S. Negro and R. Tateo, “Generalised Born-Infeld models, Lax operators and the T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation”, JHEP 11 (2018) 007, arXiv:1806.11515 [hep-th].
  61. C. Ferko and S. Sethi, “Sequential Flows by Irrelevant Operators”, arXiv:2206.04787 [hep-th].
  62. L. McGough, M. Mezei and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
  63. G. Araujo-Regado, R. Khan and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary”, arXiv:2204.00591 [hep-th].
  64. V. Gorbenko, E. Silverstein and G. Torroba, “dS/dS and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 03 (2019) 085, arXiv:1811.07965 [hep-th].
  65. E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition”, JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
  66. G. Torroba, “T⁢T¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from a 2d gravity path integral”, arXiv:2212.04512 [hep-th].
  67. M. Taylor, “TT deformations in general dimensions”, arXiv:1805.10287 [hep-th].
  68. W. Donnelly and V. Shyam, “Entanglement entropy and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, Phys. Rev. Lett. 121[13] (2018) 131602, arXiv:1806.07444 [hep-th].
  69. P. Kraus, J. Liu and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, JHEP 07 (2018) 027, arXiv:1801.02714 [hep-th].
  70. P. Caputa, S. Datta and V. Shyam, “Sphere partition functions & cut-off AdS”, JHEP 05 (2019) 112, arXiv:1902.10893 [hep-th].
  71. P. Kraus, R. Monten and R. M. Myers, “3D Gravity in a Box”, SciPost Phys. 11 (2021) 070, arXiv:2103.13398 [hep-th].
  72. S. Ebert, E. Hijano, P. Kraus, R. Monten and R. M. Myers, “Field Theory of Interacting Boundary Gravitons”, SciPost Phys. 13[2] (2022) 038, arXiv:2201.01780 [hep-th].
  73. F. K. Seibold and A. A. Tseytlin, “S-matrix on effective string and compactified membrane”, J. Phys. A 56[48] (2023) 485401, arXiv:2308.12189 [hep-th].
  74. M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations”, Phys. Rev. D98[2] (2018) 021902, arXiv:1804.01998 [hep-th].
  75. S. Frolov, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation and the Light-Cone Gauge”, Proc. Steklov Inst. Math. 309 (2020) 107, arXiv:1905.07946 [hep-th].
  76. S. Frolov, “T⁢T¯𝑇¯𝑇T{\overline{T}}italic_T over¯ start_ARG italic_T end_ARG, J~⁢J~𝐽𝐽\widetilde{J}Jover~ start_ARG italic_J end_ARG italic_J, J⁢T𝐽𝑇JTitalic_J italic_T and J~⁢T~𝐽𝑇\widetilde{J}Tover~ start_ARG italic_J end_ARG italic_T deformations”, J. Phys. A 53[2] (2020) 025401, arXiv:1907.12117 [hep-th].
  77. A. Sfondrini and S. J. van Tongeren, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations as T⁢s⁢T𝑇𝑠𝑇TsTitalic_T italic_s italic_T transformations”, Phys. Rev. D 101[6] (2020) 066022, arXiv:1908.09299 [hep-th].
  78. S. J. Gates, M. T. Grisaru, M. Rocek and W. Siegel, “Superspace, or one thousand and one lessons in supersymmetry”, Front. Phys. 58 (1983) 1, arXiv:hep-th/0108200.
  79. S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent”, Nucl. Phys. B87 (1975) 207.
  80. Z. Komargodski and N. Seiberg, “Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity”, JHEP 07 (2010) 017, arXiv:1002.2228 [hep-th].
  81. T. T. Dumitrescu and N. Seiberg, “Supercurrents and Brane Currents in Diverse Dimensions”, JHEP 07 (2011) 095, arXiv:1106.0031 [hep-th].
  82. S. M. Kuzenko, “Variant supercurrent multiplets”, JHEP 04 (2010) 022, arXiv:1002.4932 [hep-th].
  83. P. Koči, K. Koutrolikos and R. von Unge, “Complex linear superfields, Supercurrents and Supergravities”, JHEP 02 (2017) 076, arXiv:1612.08706 [hep-th].
  84. S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Three-dimensional N=2 (AdS) supergravity and associated supercurrents”, JHEP 12 (2011) 052, arXiv:1109.0496 [hep-th].
  85. P. S. Howe, K. S. Stelle and P. K. Townsend, “SUPERCURRENTS”, Nucl. Phys. B 192 (1981) 332.
  86. I. L. Buchbinder, S. J. Gates and K. Koutrolikos, “Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions”, JHEP 08 (2018) 055, arXiv:1805.04413 [hep-th].
  87. S. M. Kuzenko, U. Lindstrom and G. Tartaglino-Mazzucchelli, “Off-shell supergravity-matter couplings in three dimensions”, JHEP 03 (2011) 120, arXiv:1101.4013 [hep-th].
  88. S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Higher derivative couplings and massive supergravity in three dimensions”, JHEP 09 (2015) 081, arXiv:1506.09063 [hep-th].
  89. D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: New off-shell formulation”, JHEP 09 (2013) 072, arXiv:1305.3132 [hep-th].
  90. D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: Off-shell actions”, JHEP 10 (2013) 073, arXiv:1306.1205 [hep-th].
  91. C. Cheung, K. Kampf, J. Novotny and J. Trnka, “Effective Field Theories from Soft Limits of Scattering Amplitudes”, Phys. Rev. Lett. 114[22] (2015) 221602, arXiv:1412.4095 [hep-th].
  92. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, “Vector Effective Field Theories from Soft Limits”, Phys. Rev. Lett. 120[26] (2018) 261602, arXiv:1801.01496 [hep-th].
  93. A. Giveon, N. Itzhaki and D. Kutasov, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST”, JHEP 07 (2017) 122, arXiv:1701.05576 [hep-th].
  94. A. Giveon, N. Itzhaki and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT”, JHEP 12 (2017) 155, arXiv:1707.05800 [hep-th].
  95. M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, “Holography Beyond AdS”, Nucl. Phys. B932 (2018) 241, arXiv:1711.02690 [hep-th].
  96. S. Chakraborty, A. Giveon, N. Itzhaki and D. Kutasov, “Entanglement beyond AdS”, Nucl. Phys. B 935 (2018) 290, arXiv:1805.06286 [hep-th].
  97. S. Chakraborty, A. Giveon and D. Kutasov, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG, T⁢J¯𝑇¯𝐽T\bar{J}italic_T over¯ start_ARG italic_J end_ARG and String Theory”, arXiv:1905.00051 [hep-th].
  98. S. Chakraborty, A. Giveon and D. Kutasov, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG, black holes and negative strings”, JHEP 09 (2020) 057, arXiv:2006.13249 [hep-th].
  99. S. Chakraborty, A. Giveon and D. Kutasov, “Strings in irrelevant deformations of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT”, JHEP 11 (2020) 057, arXiv:2009.03929 [hep-th].
  100. P. Pasti, D. P. Sorokin and M. Tonin, “Duality symmetric actions with manifest space-time symmetries”, Phys. Rev. D 52 (1995) R4277, arXiv:hep-th/9506109.
  101. P. Pasti, D. P. Sorokin and M. Tonin, “On Lorentz invariant actions for chiral p forms”, Phys. Rev. D 55 (1997) 6292, arXiv:hep-th/9611100.
  102. P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for a D = 11 five-brane with the chiral field”, Phys. Lett. B 398 (1997) 41, arXiv:hep-th/9701037.

Summary

We haven't generated a summary for this paper yet.