$T \overline{T}$-Like Flows and $3d$ Nonlinear Supersymmetry (2302.10410v4)
Abstract: We show that the $3d$ Born-Infeld theory can be generated via an irrelevant deformation of the free Maxwell theory. The deforming operator is constructed from the energy-momentum tensor and includes a novel non-analytic contribution that resembles root-$T \overline{T}$. We find that a similar operator deforms a free scalar into the scalar sector of the Dirac-Born-Infeld action, which describes transverse fluctuations of a D-brane, in any dimension. We also analyse trace flow equations and obtain flows for subtracted models driven by a relevant operator. In $3d$, the irrelevant deformation can be made manifestly supersymmetric by presenting the flow equation in $\mathcal{N} = 1$ superspace, where the deforming operator is built from supercurrents. We demonstrate that two supersymmetric presentations of the D2-brane effective action, the Maxwell-Goldstone multiplet and the tensor-Goldstone multiplet, satisfy superspace flow equations driven by this supercurrent combination. To do this, we derive expressions for the supercurrents in general classes of vector and tensor/scalar models by directly solving the superspace conservation equations and also by coupling to $\mathcal{N} = 1$ supergravity. As both of these multiplets exhibit a second, spontaneously broken supersymmetry, this analysis provides further evidence for a connection between current-squared deformations and nonlinearly realized symmetries.
- R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, Journal of Differential Geometry 17[2] (1982) 255 .
- A. B. Zamolodchikov, “Expectation value of composite field T anti-T in two-dimensional quantum field theory”, arXiv:hep-th/0401146.
- A. Cavaglià, S. Negro, I. M. Szécsényi and R. Tateo, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories”, JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].
- J. Kruthoff and O. Parrikar, “On the flow of states under TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, arXiv:2006.03054 [hep-th].
- M. Guica and R. Monten, “Infinite pseudo-conformal symmetries of classical TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG and JTa𝐽subscript𝑇𝑎JT_{a}italic_J italic_T start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT - deformed CFTs”, SciPost Phys. 11 (2021) 078, arXiv:2011.05445 [hep-th].
- S. Georgescu and M. Guica, “Infinite TT¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-like symmetries of compactified LST”, arXiv:2212.09768 [hep-th].
- M. Guica, R. Monten and I. Tsiares, “Classical and quantum symmetries of TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs”, arXiv:2212.14014 [hep-th].
- F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories”, Nucl. Phys. B915 (2017) 363, arXiv:1608.05499 [hep-th].
- B. Chen, J. Hou and J. Tian, “Lax connections in TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed integrable field theories”, Chin. Phys. C 45[9] (2021) 093112, arXiv:2102.01470 [hep-th].
- J. Cardy, “The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry”, JHEP 10 (2018) 186, arXiv:1801.06895 [hep-th].
- S. Dubovsky, V. Gorbenko and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 09 (2017) 136, arXiv:1706.06604 [hep-th].
- S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity”, JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].
- S. Dubovsky, S. Negro and M. Porrati, “Topological Gauging and Double Current Deformations”, arXiv:2302.01654 [hep-th].
- R. Conti, S. Negro and R. Tateo, “The TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation”, JHEP 02 (2019) 085, arXiv:1809.09593 [hep-th].
- R. Conti, S. Negro and R. Tateo, “Conserved currents and TT¯sTsubscript¯T𝑠\text{T}\bar{\text{T}}_{s}T over¯ start_ARG T end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT irrelevant deformations of 2D integrable field theories”, arXiv:1904.09141 [hep-th].
- P. Caputa, P. Caputa, S. Datta, S. Datta, Y. Jiang, Y. Jiang, P. Kraus and P. Kraus, “Geometrizing TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 03 (2021) 140, [Erratum: JHEP 09, 110 (2022)], arXiv:2011.04664 [hep-th].
- R. Conti, J. Romano and R. Tateo, “Metric approach to a TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-like deformation in arbitrary dimensions”, JHEP 09 (2022) 085, arXiv:2206.03415 [hep-th].
- F. Aramini, N. Brizio, S. Negro and R. Tateo, “Deforming the ODE/IM correspondence with TT¯T¯T\mathrm{T}\bar{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG”, arXiv:2212.13957 [hep-th].
- R. R. Metsaev, M. Rakhmanov and A. A. Tseytlin, “The Born-Infeld Action as the Effective Action in the Open Superstring Theory”, Phys. Lett. B193 (1987) 207.
- A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory”, 1999, arXiv:hep-th/9908105.
- J. Hughes and J. Polchinski, “Partially Broken Global Supersymmetry and the Superstring”, Nucl. Phys. B278 (1986) 147.
- J. Hughes, J. Liu and J. Polchinski, “Supermembranes”, Physics Letters B 180[4] (1986) 370, URL.
- J. Bagger and A. Galperin, “A New Goldstone multiplet for partially broken supersymmetry”, Phys. Rev. D55 (1997) 1091, arXiv:hep-th/9608177.
- M. Rocek and A. A. Tseytlin, “Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions”, Phys. Rev. D59 (1999) 106001, arXiv:hep-th/9811232.
- F. Gliozzi, “Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in brane-world scenarios”, Phys. Rev. D 84 (2011) 027702, arXiv:1103.5377 [hep-th].
- R. Casalbuoni, J. Gomis and K. Kamimura, “Space-time transformations of the Born-Infeld gauge field of a D-brane”, Phys. Rev. D 84 (2011) 027901, arXiv:1104.4916 [hep-th].
- H. Jiang, A. Sfondrini and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations with 𝒩=(0,2)𝒩02\mathcal{N}=(0,2)caligraphic_N = ( 0 , 2 ) supersymmetry”, Phys. Rev. D100[4] (2019) 046017, arXiv:1904.04760 [hep-th].
- N. Cribiori, F. Farakos and R. von Unge, “2D Volkov-Akulov Model as a TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation”, Phys. Rev. Lett. 123[20] (2019) 201601, arXiv:1907.08150 [hep-th].
- C. Ferko, H. Jiang, S. Sethi and G. Tartaglino-Mazzucchelli, “Non-linear supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows”, JHEP 02 (2020) 016, arXiv:1910.01599 [hep-th].
- Y. Hu and K. Koutrolikos, “Nonlinear 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetry and 3D supersymmetric Born-Infeld theory”, Nucl. Phys. B 984 (2022) 115970, arXiv:2206.01607 [hep-th].
- E. Ivanov and S. Krivonos, “N=1𝑁1N=1italic_N = 1 D=2𝐷2D=2italic_D = 2 supermembrane in the coset approach”, Phys. Lett. B 453 (1999) 237, [Erratum: Phys.Lett.B 657, 269 (2007), Erratum: Phys.Lett.B 460, 499–499 (1999)], arXiv:hep-th/9901003.
- E. Ivanov, “Superbranes and super Born-Infeld theories as nonlinear realizations”, Theor. Math. Phys. 129 (2001) 1543, arXiv:hep-th/0105210.
- C. Ferko, A. Sfondrini, L. Smith and G. Tartaglino-Mazzucchelli, “Root-TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations in Two-Dimensional Quantum Field Theories”, Phys. Rev. Lett. 129[20] (2022) 201604, arXiv:2206.10515 [hep-th].
- A. Bagchi, A. Banerjee and H. Muraki, “Boosting to BMS”, JHEP 09 (2022) 251, arXiv:2205.05094 [hep-th].
- J. Hou, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flow as characteristic flows”, arXiv:2208.05391 [hep-th].
- J. A. Garcia and R. A. Sanchez-Isidro, “TT¯𝑇¯𝑇\sqrt{T\bar{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG-deformed oscillator inspired by ModMax”, arXiv:2209.06296 [hep-th].
- D. Tempo and R. Troncoso, “Nonlinear automorphism of the conformal algebra in 2D and continuous TT¯𝑇¯𝑇\sqrt{T\overline{T}}square-root start_ARG italic_T over¯ start_ARG italic_T end_ARG end_ARG deformations”, JHEP 12 (2022) 129, arXiv:2210.00059 [hep-th].
- S. Ebert, C. Ferko and Z. Sun, “Root-TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed boundary conditions in holography”, Phys. Rev. D 107[12] (2023) 126022, arXiv:2304.08723 [hep-th].
- C. Ferko and A. Gupta, “ModMax oscillators and root-TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like flows in supersymmetric quantum mechanics”, Phys. Rev. D 108[4] (2023) 046013, arXiv:2306.14575 [hep-th].
- C. Ferko, A. Gupta and E. Iyer, “Quantization of the ModMax Oscillator”, arXiv:2310.06015 [hep-th].
- G. Bonelli, N. Doroud and M. Zhu, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformations in closed form”, JHEP 06 (2018) 149, arXiv:1804.10967 [hep-th].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations”, Phys. Rev. D 102 (2020) 121703, arXiv:2007.09092 [hep-th].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “On p-form gauge theories and their conformal limits”, JHEP 03 (2021) 022, arXiv:2012.09286 [hep-th].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “ModMax meets Susy”, JHEP 10 (2021) 031, arXiv:2106.07547 [hep-th].
- H. Babaei-Aghbolagh, K. B. Velni, D. M. Yekta and H. Mohammadzadeh, “Emergence of non-linear electrodynamic theories from TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-like deformations”, arXiv:2202.11156 [hep-th].
- C. Ferko, L. Smith and G. Tartaglino-Mazzucchelli, “Stress Tensor Flows, Birefringence in Non-Linear Electrodynamics, and Supersymmetry”, arXiv:2301.10411 [hep-th].
- C. Ferko, L. Smith and G. Tartaglino-Mazzucchelli, “On Current-Squared Flows and ModMax Theories”, SciPost Phys. 13[2] (2022) 012, arXiv:2203.01085 [hep-th].
- H. Babaei-Aghbolagh, K. Babaei Velni, D. Mahdavian Yekta and H. Mohammadzadeh, “Marginal TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-like deformation and modified Maxwell theories in two dimensions”, Phys. Rev. D 106[8] (2022) 086022, arXiv:2206.12677 [hep-th].
- R. Borsato, C. Ferko and A. Sfondrini, “On the Classical Integrability of Root-TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Flows”, arXiv:2209.14274 [hep-th].
- M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, “On TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and supersymmetry”, JHEP 06 (2019) 063, arXiv:1811.00533 [hep-th].
- C.-K. Chang, C. Ferko and S. Sethi, “Supersymmetry and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations”, JHEP 04 (2019) 131, arXiv:1811.01895 [hep-th].
- E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman and R. M. Soni, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry”, JHEP 10 (2019) 080, arXiv:1906.05439 [hep-th].
- S. He, J.-R. Sun and Y. Sun, “The correlation function of (1,1) and (2,2) supersymmetric theories with TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, JHEP 04 (2020) 100, arXiv:1912.11461 [hep-th].
- H. Jiang and G. Tartaglino-Mazzucchelli, “Supersymmetric JT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG and TJ¯¯𝐽\overline{J}over¯ start_ARG italic_J end_ARG deformations”, JHEP 05 (2020) 140, arXiv:1911.05631 [hep-th].
- C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini and G. Tartaglino-Mazzucchelli, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG flows and (2,2) supersymmetry”, Phys. Rev. D 101[2] (2020) 026008, arXiv:1906.00467 [hep-th].
- S. Ebert, H.-Y. Sun and Z. Sun, “TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG deformation in SCFTs and integrable supersymmetric theories”, JHEP 09 (2021) 082, arXiv:2011.07618 [hep-th].
- K.-S. Lee, P. Yi and J. Yoon, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed fermionic theories revisited”, JHEP 07 (2021) 217, arXiv:2104.09529 [hep-th].
- S. He, H. Ouyang and Y. Sun, “Note on TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed matrix models and JT supergravity duals”, arXiv:2204.13636 [hep-th].
- S. Ebert, C. Ferko, H.-Y. Sun and Z. Sun, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformations of Supersymmetric Quantum Mechanics”, arXiv:2204.05897 [hep-th].
- R. Conti, L. Iannella, S. Negro and R. Tateo, “Generalised Born-Infeld models, Lax operators and the TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation”, JHEP 11 (2018) 007, arXiv:1806.11515 [hep-th].
- C. Ferko and S. Sethi, “Sequential Flows by Irrelevant Operators”, arXiv:2206.04787 [hep-th].
- L. McGough, M. Mezei and H. Verlinde, “Moving the CFT into the bulk with TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
- G. Araujo-Regado, R. Khan and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary”, arXiv:2204.00591 [hep-th].
- V. Gorbenko, E. Silverstein and G. Torroba, “dS/dS and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG”, JHEP 03 (2019) 085, arXiv:1811.07965 [hep-th].
- E. Coleman, E. A. Mazenc, V. Shyam, E. Silverstein, R. M. Soni, G. Torroba and S. Yang, “De Sitter microstates from TT¯¯𝑇\overline{T}over¯ start_ARG italic_T end_ARG + ΛΛ\Lambdaroman_Λ22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and the Hawking-Page transition”, JHEP 07 (2022) 140, arXiv:2110.14670 [hep-th].
- G. Torroba, “TT¯+Λ2𝑇¯𝑇subscriptΛ2T\bar{T}+\Lambda_{2}italic_T over¯ start_ARG italic_T end_ARG + roman_Λ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT from a 2d gravity path integral”, arXiv:2212.04512 [hep-th].
- M. Taylor, “TT deformations in general dimensions”, arXiv:1805.10287 [hep-th].
- W. Donnelly and V. Shyam, “Entanglement entropy and TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, Phys. Rev. Lett. 121[13] (2018) 131602, arXiv:1806.07444 [hep-th].
- P. Kraus, J. Liu and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation”, JHEP 07 (2018) 027, arXiv:1801.02714 [hep-th].
- P. Caputa, S. Datta and V. Shyam, “Sphere partition functions & cut-off AdS”, JHEP 05 (2019) 112, arXiv:1902.10893 [hep-th].
- P. Kraus, R. Monten and R. M. Myers, “3D Gravity in a Box”, SciPost Phys. 11 (2021) 070, arXiv:2103.13398 [hep-th].
- S. Ebert, E. Hijano, P. Kraus, R. Monten and R. M. Myers, “Field Theory of Interacting Boundary Gravitons”, SciPost Phys. 13[2] (2022) 038, arXiv:2201.01780 [hep-th].
- F. K. Seibold and A. A. Tseytlin, “S-matrix on effective string and compactified membrane”, J. Phys. A 56[48] (2023) 485401, arXiv:2308.12189 [hep-th].
- M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations”, Phys. Rev. D98[2] (2018) 021902, arXiv:1804.01998 [hep-th].
- S. Frolov, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation and the Light-Cone Gauge”, Proc. Steklov Inst. Math. 309 (2020) 107, arXiv:1905.07946 [hep-th].
- S. Frolov, “TT¯𝑇¯𝑇T{\overline{T}}italic_T over¯ start_ARG italic_T end_ARG, J~J~𝐽𝐽\widetilde{J}Jover~ start_ARG italic_J end_ARG italic_J, JT𝐽𝑇JTitalic_J italic_T and J~T~𝐽𝑇\widetilde{J}Tover~ start_ARG italic_J end_ARG italic_T deformations”, J. Phys. A 53[2] (2020) 025401, arXiv:1907.12117 [hep-th].
- A. Sfondrini and S. J. van Tongeren, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations as TsT𝑇𝑠𝑇TsTitalic_T italic_s italic_T transformations”, Phys. Rev. D 101[6] (2020) 066022, arXiv:1908.09299 [hep-th].
- S. J. Gates, M. T. Grisaru, M. Rocek and W. Siegel, “Superspace, or one thousand and one lessons in supersymmetry”, Front. Phys. 58 (1983) 1, arXiv:hep-th/0108200.
- S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent”, Nucl. Phys. B87 (1975) 207.
- Z. Komargodski and N. Seiberg, “Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity”, JHEP 07 (2010) 017, arXiv:1002.2228 [hep-th].
- T. T. Dumitrescu and N. Seiberg, “Supercurrents and Brane Currents in Diverse Dimensions”, JHEP 07 (2011) 095, arXiv:1106.0031 [hep-th].
- S. M. Kuzenko, “Variant supercurrent multiplets”, JHEP 04 (2010) 022, arXiv:1002.4932 [hep-th].
- P. Koči, K. Koutrolikos and R. von Unge, “Complex linear superfields, Supercurrents and Supergravities”, JHEP 02 (2017) 076, arXiv:1612.08706 [hep-th].
- S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Three-dimensional N=2 (AdS) supergravity and associated supercurrents”, JHEP 12 (2011) 052, arXiv:1109.0496 [hep-th].
- P. S. Howe, K. S. Stelle and P. K. Townsend, “SUPERCURRENTS”, Nucl. Phys. B 192 (1981) 332.
- I. L. Buchbinder, S. J. Gates and K. Koutrolikos, “Conserved higher spin supercurrents for arbitrary spin massless supermultiplets and higher spin superfield cubic interactions”, JHEP 08 (2018) 055, arXiv:1805.04413 [hep-th].
- S. M. Kuzenko, U. Lindstrom and G. Tartaglino-Mazzucchelli, “Off-shell supergravity-matter couplings in three dimensions”, JHEP 03 (2011) 120, arXiv:1101.4013 [hep-th].
- S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Higher derivative couplings and massive supergravity in three dimensions”, JHEP 09 (2015) 081, arXiv:1506.09063 [hep-th].
- D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: New off-shell formulation”, JHEP 09 (2013) 072, arXiv:1305.3132 [hep-th].
- D. Butter, S. M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, “Conformal supergravity in three dimensions: Off-shell actions”, JHEP 10 (2013) 073, arXiv:1306.1205 [hep-th].
- C. Cheung, K. Kampf, J. Novotny and J. Trnka, “Effective Field Theories from Soft Limits of Scattering Amplitudes”, Phys. Rev. Lett. 114[22] (2015) 221602, arXiv:1412.4095 [hep-th].
- C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, “Vector Effective Field Theories from Soft Limits”, Phys. Rev. Lett. 120[26] (2018) 261602, arXiv:1801.01496 [hep-th].
- A. Giveon, N. Itzhaki and D. Kutasov, “TT¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST”, JHEP 07 (2017) 122, arXiv:1701.05576 [hep-th].
- A. Giveon, N. Itzhaki and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT”, JHEP 12 (2017) 155, arXiv:1707.05800 [hep-th].
- M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, “Holography Beyond AdS”, Nucl. Phys. B932 (2018) 241, arXiv:1711.02690 [hep-th].
- S. Chakraborty, A. Giveon, N. Itzhaki and D. Kutasov, “Entanglement beyond AdS”, Nucl. Phys. B 935 (2018) 290, arXiv:1805.06286 [hep-th].
- S. Chakraborty, A. Giveon and D. Kutasov, “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, JT¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG, TJ¯𝑇¯𝐽T\bar{J}italic_T over¯ start_ARG italic_J end_ARG and String Theory”, arXiv:1905.00051 [hep-th].
- S. Chakraborty, A. Giveon and D. Kutasov, “TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG, black holes and negative strings”, JHEP 09 (2020) 057, arXiv:2006.13249 [hep-th].
- S. Chakraborty, A. Giveon and D. Kutasov, “Strings in irrelevant deformations of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT”, JHEP 11 (2020) 057, arXiv:2009.03929 [hep-th].
- P. Pasti, D. P. Sorokin and M. Tonin, “Duality symmetric actions with manifest space-time symmetries”, Phys. Rev. D 52 (1995) R4277, arXiv:hep-th/9506109.
- P. Pasti, D. P. Sorokin and M. Tonin, “On Lorentz invariant actions for chiral p forms”, Phys. Rev. D 55 (1997) 6292, arXiv:hep-th/9611100.
- P. Pasti, D. P. Sorokin and M. Tonin, “Covariant action for a D = 11 five-brane with the chiral field”, Phys. Lett. B 398 (1997) 41, arXiv:hep-th/9701037.