Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off (2301.10300v1)
Abstract: We study the gradient-flow structure of a non-Newtonian thin film equation with power-law rheology. The equation is quasilinear, of fourth order and doubly-degenerate parabolic. By adding a singular potential to the natural Dirichlet energy, we introduce a modified version of the thin-film equation. Then, we set up a minimising-movement scheme that converges to global positive weak solutions to the modified problem. These solutions satisfy an energy-dissipation equality and follow a gradient flow. In the limit of a vanishing singularity of the potential, we obtain global non-negative weak solutions to the power-law thin-film equation \begin{equation*} \partial_t u + \partial_x\bigl(m(u) |\partial_x3 u - G{\prime\prime}(u) \partial_x u|{\alpha-1} \bigl(\partial_x3 u - G{\prime\prime}(u) \partial_x u\bigr)\bigr) = 0 \end{equation*} with potential $G$ in the shear-thinning ($\alpha > 1$), Newtonian ($\alpha = 1$) and shear-thickening case ($0 <\alpha < 1$). The latter satisfy an energy-dissipation inequality. Finally, we derive dissipation bounds in the case $G\equiv 0$ which imply that solutions emerging from initial values with low energy lift up uniformly in finite time.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.