Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

The minimal volume of a lattice polytope (2301.09972v1)

Published 22 Jan 2023 in math.CO

Abstract: Let $\mathcal{P} \subset \mathbb{R}d$ be a lattice polytope of dimension $d$. Let $b$ denote the number of lattice points belonging to the boundary of $\mathcal{P}$ and $c$ that to the interior of $\mathcal{P}$. It follows from a lower bound theorem of Ehrhart polynomials that, when $c > 0$, the volume of $\mathcal{P}$ is bigger than or equal to $(dc + (d-1)b - d2 + 2)/d!$. In the present paper, via triangulations, a short and elementary proof of the minimal volume formula is given.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.