Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A performance characterization of quantum generative models (2301.09363v3)

Published 23 Jan 2023 in quant-ph

Abstract: Quantum generative modeling is a growing area of interest for industry-relevant applications. With the field still in its infancy, there are many competing techniques. This work is an attempt to systematically compare a broad range of these techniques to guide quantum computing practitioners when deciding which models and techniques to use in their applications. We compare fundamentally different architectural ansatzes of parametric quantum circuits used for quantum generative modeling: 1. A continuous architecture, which produces continuous-valued data samples, and 2. a discrete architecture, which samples on a discrete grid. We compare the performance of different data transformations: normalization by the min-max transform or by the probability integral transform. We learn the underlying probability distribution of the data sets via two popular training methods: 1. quantum circuit Born machines (QCBM), and 2. quantum generative adversarial networks (QGAN). We study their performance and trade-offs as the number of model parameters increases, with the baseline of similarly trained classical neural networks. The study is performed on six low-dimensional synthetic and two real financial data sets. Our two key findings are that: 1. For all data sets, our quantum models require similar or fewer parameters than their classical counterparts. In the extreme case, the quantum models require two of orders of magnitude less parameters. 2. We empirically find that a variant of the discrete architecture, which learns the copula of the probability distribution, outperforms all other methods.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com