Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Suboptimality analysis of receding horizon quadratic control with unknown linear systems and its applications in learning-based control (2301.07876v3)

Published 19 Jan 2023 in eess.SY, cs.LG, and cs.SY

Abstract: This work analyzes how the trade-off between the modeling error, the terminal value function error, and the prediction horizon affects the performance of a nominal receding-horizon linear quadratic (LQ) controller. By developing a novel perturbation result of the Riccati difference equation, a novel performance upper bound is obtained and suggests that for many cases, the prediction horizon can be either one or infinity to improve the control performance, depending on the relative difference between the modeling error and the terminal value function error. The result also shows that when an infinite horizon is desired, a finite prediction horizon that is larger than the controllability index can be sufficient for achieving a near-optimal performance, revealing a close relation between the prediction horizon and controllability. The obtained suboptimality performance bound is applied to provide novel sample complexity and regret guarantees for nominal receding-horizon LQ controllers in a learning-based setting. We show that an adaptive prediction horizon that increases as a logarithmic function of time is beneficial for regret minimization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.