Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Guarantees of Minimizing Regret in Receding Horizon (2306.14561v1)

Published 26 Jun 2023 in eess.SY and cs.SY

Abstract: Towards bridging classical optimal control and online learning, regret minimization has recently been proposed as a control design criterion. This competitive paradigm penalizes the loss relative to the optimal control actions chosen by a clairvoyant policy, and allows tracking the optimal performance in hindsight no matter how disturbances are generated. In this paper, we propose the first receding horizon scheme based on the repeated computation of finite horizon regret-optimal policies, and we establish stability and safety guarantees for the resulting closed-loop system. Our derivations combine novel monotonicity properties of clairvoyant policies with suitable terminal ingredients. We prove that our scheme is recursively feasible, stabilizing, and that it achieves bounded regret relative to the infinite horizon clairvoyant policy. Last, we show that the policy optimization problem can be solved efficiently through convex-concave programming. Our numerical experiments show that minimizing regret can outperform standard receding horizon approaches when the disturbances poorly fit classical design assumptions - even when the finite horizon planning is recomputed less frequently.

Citations (4)

Summary

We haven't generated a summary for this paper yet.