Parametric resonance in abelian and non-abelian gauge fields via space-time oscillations (2301.07456v2)
Abstract: We study the evolution of abelian $U(1)$ electromagnetic as well as non-abelian $SU(2)$ gauge fields, in the presence of space-time oscillations. Analysis of the time evolution of abelian gauge fields shows the presence of parametric resonance in spatial modes. A similar analysis in the case of non-abelian gauge fields, in the linear approximation, shows the presence of the same resonant spatial modes. The resonant modes induce large fluctuations in physical observables including those that break the $CP-$symmetry. We also carry out time evolution of small random fluctuations of the gauge fields, using numerical simulations in $2+1$ and $3+1$ dimensions. These simulations help to study non-linear effects in the case of non-abelian gauge theories. Our results show that there is an increase in energy density with the coupling, at late times. These results suggest that gravitational waves may excite non-abelian gauge fields more efficiently than electromagnetic fields. Also, gravitational waves in the early Universe and from the merger of neutron stars, black holes etc. may enhance $CP-$violation and generate an imbalance in chiral charge distributions, magnetic fields etc.
- B. L. Hu and D. Pavon, “Intrinsic Measures of Field Entropy in Cosmological Particle Creation", Phys. Lett. B180, 329-334 (1986). doi:10.1016/0370-2693(86)91197-4
- B. L. Hu and H. E. Kandrup, “Entropy Generation in Cosmological Particle Creation and Interactions: A Statistical Subdynamics Analysis", Phys. Rev. D 35, 1776-1792 (1987). doi:10.1103/PhysRevD.35.1776
- H. E. Kandrup, “Entropy generation, particle creation, and quantum field theory in a cosmological spacetime: When do number and entropy increase?", Phys. Rev. D 37, 3505-3521 (1988). doi:10.1103/PhysRevD.37.3505
- J. H. Traschen and R. H. Brandenberger, “Particle Production During Out-of-equilibrium Phase Transitions,” Phys. Rev. D 42, 2491-2504 (1990) doi:10.1103/PhysRevD.42.2491
- L. Kofman, A. D. Linde and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev. Lett. 73, 3195-3198 (1994) doi:10.1103/PhysRevLett.73.3195 [arXiv:hep-th/9405187 [hep-th]].
- L. Kofman, A. D. Linde and A. A. Starobinsky, “Towards the theory of reheating after inflation,” Phys. Rev. D 56, 3258-3295 (1997) doi:10.1103/PhysRevD.56.3258 [arXiv:hep-ph/9704452 [hep-ph]].
- D. Boyanovsky, H. J. de Vega, R. Holman, D. S. Lee and A. Singh, “Dissipation via particle production in scalar field theories,” Phys. Rev. D 51, 4419-4444 (1995). doi:10.1103/PhysRevD.51.4419 [arXiv:hep-ph/9408214 [hep-ph]].
- S. Digal, R. Ray, S. Sengupta and A. M. Srivastava, “Resonant production of topological defects,” Phys. Rev. Lett. 84, 826-829 (2000) doi:10.1103/PhysRevLett.84.826 [arXiv:hep-ph/9911446 [hep-ph]].
- S. S. Dave and S. Digal, “Effects of oscillating spacetime metric background on a complex scalar field and formation of topological vortices,” Phys. Rev. D 103, 116007 (2021) doi:10.1103/PhysRevD.103.116007 [arXiv:1911.13216 [hep-th]].
- S. S. Dave and S. Digal, “Field excitation in fuzzy dark matter near a strong gravitational wave source,” [arXiv:2106.05812 [gr-qc]].
- J. B. Griffiths, “Colliding Gravitational and Electromagnetic Waves,” Phys. Lett. A 54, 269-270 (1975) doi:10.1016/0375-9601(75)90254-6
- F. I. Cooperstock, “The Interaction Between Electromagnetic and Gravitational Waves,” Annals of Physics, 47 (1968), 173 doi:10.1016/0003-4916(68)90233-9
- C. Barrabes and P. A. Hogan, “On The Interaction of Gravitational Waves with Magnetic and Electric Fields,” Phys. Rev. D 81, 064024 (2010) doi:10.1103/PhysRevD.81.064024 [arXiv:1003.0571 [gr-qc]].
- W. Barreto, H. P. De Oliveira and E. L. Rodrigues, “Nonlinear interaction between electromagnetic and gravitational waves: an appraisal,” Int. J. Mod. Phys. D 26, no.12, 1743017 (2017) doi:10.1142/S0218271817430179 [arXiv:1705.05771 [gr-qc]].
- P. Jones, A. Gretarsson and D. Singleton, “Low frequency electromagnetic radiation from gravitational waves generated by neutron stars,” Phys. Rev. D 96, no.12, 124030 (2017) doi:10.1103/PhysRevD.96.124030 [arXiv:1709.09033 [gr-qc]].
- A. Patel and A. Dasgupta, “Interaction of Electromagnetic field with a Gravitational wave in Minkowski and de-Sitter space-time,” [arXiv:2108.01788 [gr-qc]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.