Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parametric resonance in abelian and non-abelian gauge fields via space-time oscillations (2301.07456v2)

Published 18 Jan 2023 in hep-ph, astro-ph.HE, gr-qc, and hep-th

Abstract: We study the evolution of abelian $U(1)$ electromagnetic as well as non-abelian $SU(2)$ gauge fields, in the presence of space-time oscillations. Analysis of the time evolution of abelian gauge fields shows the presence of parametric resonance in spatial modes. A similar analysis in the case of non-abelian gauge fields, in the linear approximation, shows the presence of the same resonant spatial modes. The resonant modes induce large fluctuations in physical observables including those that break the $CP-$symmetry. We also carry out time evolution of small random fluctuations of the gauge fields, using numerical simulations in $2+1$ and $3+1$ dimensions. These simulations help to study non-linear effects in the case of non-abelian gauge theories. Our results show that there is an increase in energy density with the coupling, at late times. These results suggest that gravitational waves may excite non-abelian gauge fields more efficiently than electromagnetic fields. Also, gravitational waves in the early Universe and from the merger of neutron stars, black holes etc. may enhance $CP-$violation and generate an imbalance in chiral charge distributions, magnetic fields etc.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. B. L. Hu and D. Pavon, “Intrinsic Measures of Field Entropy in Cosmological Particle Creation", Phys. Lett. B180, 329-334 (1986). doi:10.1016/0370-2693(86)91197-4
  2. B. L. Hu and H. E. Kandrup, “Entropy Generation in Cosmological Particle Creation and Interactions: A Statistical Subdynamics Analysis", Phys. Rev. D 35, 1776-1792 (1987). doi:10.1103/PhysRevD.35.1776
  3. H. E. Kandrup, “Entropy generation, particle creation, and quantum field theory in a cosmological spacetime: When do number and entropy increase?", Phys. Rev. D 37, 3505-3521 (1988). doi:10.1103/PhysRevD.37.3505
  4. J. H. Traschen and R. H. Brandenberger, “Particle Production During Out-of-equilibrium Phase Transitions,” Phys. Rev. D 42, 2491-2504 (1990) doi:10.1103/PhysRevD.42.2491
  5. L. Kofman, A. D. Linde and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev. Lett. 73, 3195-3198 (1994) doi:10.1103/PhysRevLett.73.3195 [arXiv:hep-th/9405187 [hep-th]].
  6. L. Kofman, A. D. Linde and A. A. Starobinsky, “Towards the theory of reheating after inflation,” Phys. Rev. D 56, 3258-3295 (1997) doi:10.1103/PhysRevD.56.3258 [arXiv:hep-ph/9704452 [hep-ph]].
  7. D. Boyanovsky, H. J. de Vega, R. Holman, D. S. Lee and A. Singh, “Dissipation via particle production in scalar field theories,” Phys. Rev. D 51, 4419-4444 (1995). doi:10.1103/PhysRevD.51.4419 [arXiv:hep-ph/9408214 [hep-ph]].
  8. S. Digal, R. Ray, S. Sengupta and A. M. Srivastava, “Resonant production of topological defects,” Phys. Rev. Lett. 84, 826-829 (2000) doi:10.1103/PhysRevLett.84.826 [arXiv:hep-ph/9911446 [hep-ph]].
  9. S. S. Dave and S. Digal, “Effects of oscillating spacetime metric background on a complex scalar field and formation of topological vortices,” Phys. Rev. D 103, 116007 (2021) doi:10.1103/PhysRevD.103.116007 [arXiv:1911.13216 [hep-th]].
  10. S. S. Dave and S. Digal, “Field excitation in fuzzy dark matter near a strong gravitational wave source,” [arXiv:2106.05812 [gr-qc]].
  11. J. B. Griffiths, “Colliding Gravitational and Electromagnetic Waves,” Phys. Lett. A 54, 269-270 (1975) doi:10.1016/0375-9601(75)90254-6
  12. F. I. Cooperstock, “The Interaction Between Electromagnetic and Gravitational Waves,” Annals of Physics, 47 (1968), 173 doi:10.1016/0003-4916(68)90233-9
  13. C. Barrabes and P. A. Hogan, “On The Interaction of Gravitational Waves with Magnetic and Electric Fields,” Phys. Rev. D 81, 064024 (2010) doi:10.1103/PhysRevD.81.064024 [arXiv:1003.0571 [gr-qc]].
  14. W. Barreto, H. P. De Oliveira and E. L. Rodrigues, “Nonlinear interaction between electromagnetic and gravitational waves: an appraisal,” Int. J. Mod. Phys. D 26, no.12, 1743017 (2017) doi:10.1142/S0218271817430179 [arXiv:1705.05771 [gr-qc]].
  15. P. Jones, A. Gretarsson and D. Singleton, “Low frequency electromagnetic radiation from gravitational waves generated by neutron stars,” Phys. Rev. D 96, no.12, 124030 (2017) doi:10.1103/PhysRevD.96.124030 [arXiv:1709.09033 [gr-qc]].
  16. A. Patel and A. Dasgupta, “Interaction of Electromagnetic field with a Gravitational wave in Minkowski and de-Sitter space-time,” [arXiv:2108.01788 [gr-qc]].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.