Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SwinDepth: Unsupervised Depth Estimation using Monocular Sequences via Swin Transformer and Densely Cascaded Network (2301.06715v1)

Published 17 Jan 2023 in cs.CV, cs.LG, and cs.RO

Abstract: Monocular depth estimation plays a critical role in various computer vision and robotics applications such as localization, mapping, and 3D object detection. Recently, learning-based algorithms achieve huge success in depth estimation by training models with a large amount of data in a supervised manner. However, it is challenging to acquire dense ground truth depth labels for supervised training, and the unsupervised depth estimation using monocular sequences emerges as a promising alternative. Unfortunately, most studies on unsupervised depth estimation explore loss functions or occlusion masks, and there is little change in model architecture in that ConvNet-based encoder-decoder structure becomes a de-facto standard for depth estimation. In this paper, we employ a convolution-free Swin Transformer as an image feature extractor so that the network can capture both local geometric features and global semantic features for depth estimation. Also, we propose a Densely Cascaded Multi-scale Network (DCMNet) that connects every feature map directly with another from different scales via a top-down cascade pathway. This densely cascaded connectivity reinforces the interconnection between decoding layers and produces high-quality multi-scale depth outputs. The experiments on two different datasets, KITTI and Make3D, demonstrate that our proposed method outperforms existing state-of-the-art unsupervised algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dongseok Shim (13 papers)
  2. H. Jin Kim (58 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.