Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised monocular stereo matching (1812.11671v1)

Published 31 Dec 2018 in cs.CV

Abstract: At present, deep learning has been applied more and more in monocular image depth estimation and has shown promising results. The current more ideal method for monocular depth estimation is the supervised learning based on ground truth depth, but this method requires an abundance of expensive ground truth depth as the supervised labels. Therefore, researchers began to work on unsupervised depth estimation methods. Although the accuracy of unsupervised depth estimation method is still lower than that of supervised method, it is a promising research direction. In this paper, Based on the experimental results that the stereo matching models outperforms monocular depth estimation models under the same unsupervised depth estimation model, we proposed an unsupervised monocular vision stereo matching method. In order to achieve the monocular stereo matching, we constructed two unsupervised deep convolution network models, one was to reconstruct the right view from the left view, and the other was to estimate the depth map using the reconstructed right view and the original left view. The two network models are piped together during the test phase. The output results of this method outperforms the current mainstream unsupervised depth estimation method in the challenging KITTI dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhimin Zhang (97 papers)
  2. Jianzhong Qiao (2 papers)
  3. Shukuan Lin (1 paper)

Summary

We haven't generated a summary for this paper yet.