Some extensions of Berezin number inequalities on operators (2301.06603v1)
Abstract: In this paper, we establish some upper bounds for Berezin number inequalities including of $2\times 2$ operator matrices and their off-diagonal parts. Among other inequalities, it is shown that if $T=\left[\begin{array}{cc} 0&X, Y&0 \end{array}\right]$, then \begin{align*} \textbf{ber}{r}(T)\leq 2{r-2}\left(\textbf{ber}(f{2r}(|X|)+g{2r}(|Y|))+\textbf{ber}(f{2r}(|Y|)+g{2r}(|X^|))\right)\ -2{r-2} \inf_{|(k_{\lambda_{1}},k_{\lambda_{2}})|=1} \eta(k_{\lambda_{1}},k_{\lambda_{2}}), \end{align*} where $\eta (k_{\lambda_{1}}, k_{\lambda_{2}}) = \left(\left\langle(f{2r}(|X|)+g{2r}(|Y*|)\right)k_{\lambda_{2}},k_{\lambda_{2}}\right\rangle\frac{1}{2}-\left\langle \left(f{2r}(|Y|)+g{2r}(|X*|)\right)k_{\lambda_{1}},k_{\lambda_{1}}\right\rangle\frac{1}{2})2$, $X, Y$ are bounded linear operators on a Hilbert space $\mathcal H=\mathcal H(\Omega)$, $r\geq 1$ and $f$, $g$ are nonnegative continuous functions on $[0, \infty)$ satisfying the relation $f(t)g(t)=t\,(t\in[0, \infty))$.