Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Extreme mass ratio inspirals in galaxies with dark matter halos (2301.05088v2)

Published 12 Jan 2023 in gr-qc and astro-ph.GA

Abstract: Using an analytic, static, and spherically symmetric metric for a Schwarzschild black hole immersed in a dark matter (DM) halo with the Hernquist-type profile, we derive analytic expressions for the orbital period and precession of eccentric extreme mass ratio inspirals (EMRIs) surrounded by DM halos, and we show how the precession rates decrease and even undergo a prograde-to-retrograde precession transition if the density of DM halo is large enough. The presence of local DM halos also retards the decrease of the semi-latus rectum and the eccentricity. The orbital evolution of EMRIs immersed in DM halos is then calculated numerically by considering the combined effects of gravitational radiation reaction, dynamical friction, and accretion. Comparing the number of orbital cycles accumulated over a one-year evolution for EMRIs with and without DM halos, we find that DM halos with compactness as small as $10{-5}$ can be detected. From the mismatch between gravitational waveforms of EMRIs with and without DM halos, we show that EMRIs in galaxies can be used to probe the existence of DM halos and detect the compactness of DM halos as small as $10{-5}$. Employing the Fisher information matrix method, we find that larger compactness and density values of DM halos help to reduce the estimation error of parameters and further break the degeneracy between the parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a).
  2. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016b).
  3. B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019).
  4. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021).
  5. R. Abbott et al. (LIGO Scientific and Virgo Collaborations), GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. D 109, 022001 (2024).
  6. R. Abbott et al. (KAGRA, VIRGO and LIGO Scientific Collaborations ), GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run, Phys. Rev. X 13, 041039 (2023).
  7. K. Danzmann, LISA: An ESA cornerstone mission for a gravitational wave observatory, Classical Quantum Gravity 14, 1399 (1997).
  8. P. Amaro-Seoane et al. (LISA Collaboration), Laser Interferometer Space Antenna, arXiv:1702.00786 .
  9. M. Colpi et al., LISA Definition Study Report, arXiv:2402.07571 [astro-ph.CO] .
  10. J. Luo et al. (TianQin Collaboration), TianQin: a space-borne gravitational wave detector, Classical Quantum Gravity 33, 035010 (2016).
  11. W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
  12. Y. Gong, J. Luo, and B. Wang, Concepts and status of Chinese space gravitational wave detection projects, Nat. Astron. 5, 881 (2021).
  13. V. Baibhav et al., Probing the nature of black holes: Deep in the mHz gravitational-wave sky, Exper. Astron. 51, 1385 (2021).
  14. P. A. Seoane et al. (LISA Collaboration), Astrophysics with the Laser Interferometer Space Antenna, Living Rev. Relativity 26, 2 (2023).
  15. K. G. Arun et al. (LISA Collaboration), New horizons for fundamental physics with LISA, Living Rev. Relativity 25, 4 (2022).
  16. N. Karnesis et al., The Laser Interferometer Space Antenna mission in Greece White Paper, arXiv:2209.04358 .
  17. P. A. Seoane et al., The effect of mission duration on LISA science objectives, Gen. Relativ. Gravit. 54, 3 (2022).
  18. S. McGee, A. Sesana, and A. Vecchio, Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations, Nat. Astron. 4, 26 (2020).
  19. S. van den Bergh, The Early history of dark matter, Publ. Astron. Soc. Pac. 111, 657 (1999).
  20. V. C. Rubin and W. K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159, 379 (1970).
  21. K. G. Begeman, A. H. Broeils, and R. H. Sanders, Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics, Mon. Not. R. Astron. Soc. 249, 523 (1991).
  22. M. Persic, P. Salucci, and F. Stel, The Universal rotation curve of spiral galaxies: 1. The Dark matter connection, Mon. Not. R. Astron. Soc. 281, 27 (1996).
  23. E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. R. Astron. Soc. 311, 441 (2000).
  24. L. A. Moustakas et al., Strong gravitational lensing probes of the particle nature of dark matter, arXiv:0902.3219 .
  25. R. Massey, T. Kitching, and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73, 086901 (2010).
  26. J. Ellis and K. A. Olive, Supersymmetric Dark Matter Candidates, arXiv:1001.3651 .
  27. A. Challinor, CMB anisotropy science: a review, IAU Symp. 288, 42 (2013).
  28. L. Sadeghian, F. Ferrer, and C. M. Will, Dark matter distributions around massive black holes: A general relativistic analysis, Phys. Rev. D 88, 063522 (2013).
  29. J. F. Navarro, C. S. Frenk, and S. D. M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490, 493 (1997).
  30. P. Gondolo and J. Silk, Dark matter annihilation at the galactic center, Phys. Rev. Lett. 83, 1719 (1999).
  31. L. Hernquist, An Analytical Model for Spherical Galaxies and Bulges, Astrophys. J. 356, 359 (1990).
  32. B. Kocsis, N. Yunes, and A. Loeb, Observable Signatures of EMRI Black Hole Binaries Embedded in Thin Accretion Disks, Phys. Rev. D 84, 024032 (2011).
  33. E. Barausse, V. Cardoso, and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D 89, 104059 (2014).
  34. L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Classical Quantum Gravity 36, 143001 (2019).
  35. V. Cardoso and A. Maselli, Constraints on the astrophysical environment of binaries with gravitational-wave observations, Astron. Astrophys. 644, A147 (2020).
  36. X.-J. Yue and Z. Cao, Dark matter minispike: A significant enhancement of eccentricity for intermediate-mass-ratio inspirals, Phys. Rev. D 100, 043013 (2019).
  37. L. Annulli, V. Cardoso, and R. Vicente, Stirred and shaken: Dynamical behavior of boson stars and dark matter cores, Phys. Lett. B 811, 135944 (2020).
  38. L. Zwick, P. R. Capelo, and L. Mayer, Priorities in gravitational waveforms for future space-borne detectors: vacuum accuracy or environment?, Mon. Not. R. Astron. Soc. 521, 4645 (2023).
  39. A. Einstein, On a stationary system with spherical symmetry consisting of many gravitating masses, Annals Math. 40, 922 (1939).
  40. A. Geralico, F. Pompi, and R. Ruffini, On Einstein clusters, Int. J. Mod. Phys. Conf. Ser. 12, 146 (2012).
  41. R. A. Konoplya and A. Zhidenko, Solutions of the Einstein Equations for a Black Hole Surrounded by a Galactic Halo, Astrophys. J. 933, 166 (2022).
  42. K. Jusufi, Black holes surrounded by Einstein clusters as models of dark matter fluid, Eur. Phys. J. C 83, 103 (2023).
  43. J. Liu, S. Chen, and J. Jing, Tidal effects of a dark matter halo around a galactic black hole*, Chin. Phys. C 46, 105104 (2022).
  44. Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity, Astron. J. 67, 591 (1962).
  45. D. C. Heggie, Binary evolution in stellar dynamics, Mon. Not. R. Astron. Soc. 173, 729 (1975).
  46. L. Wen, On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters, Astrophys. J. 598, 419 (2003).
  47. M. C. Miller and D. P. Hamilton, Four-body effects in globular cluster black hole coalescence, Astrophys. J. 576, 894 (2002).
  48. C. Cutler, D. Kennefick, and E. Poisson, Gravitational radiation reaction for bound motion around a Schwarzschild black hole, Phys. Rev. D 50, 3816 (1994).
  49. J. R. Gair and K. Glampedakis, Improved approximate inspirals of test-bodies into Kerr black holes, Phys. Rev. D 73, 064037 (2006).
  50. V. Cardoso, C. F. B. Macedo, and R. Vicente, Eccentricity evolution of compact binaries and applications to gravitational-wave physics, Phys. Rev. D 103, 023015 (2021).
  51. S. Chandrasekhar, Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction, Astrophys. J. 97, 255 (1943).
  52. H. Bondi and F. Hoyle, On the mechanism of accretion by stars, Mon. Not. R. Astron. Soc. 104, 273 (1944).
  53. R. G. Edgar, A Review of Bondi-Hoyle-Lyttleton accretion, New Astron. Rev. 48, 843 (2004).
  54. J. E. Taylor and J. Silk, The Clumpiness of cold dark matter: Implications for the annihilation signal, Mon. Not. R. Astron. Soc. 339, 505 (2003).
  55. A. Burkert, The Structure of dark matter halos in dwarf galaxies, Astrophys. J. Lett. 447, L25 (1995).
  56. E. Figueiredo, A. Maselli, and V. Cardoso, Black holes surrounded by generic dark matter profiles: Appearance and gravitational-wave emission, Phys. Rev. D 107, 104033 (2023).
  57. F. Iocco, M. Pato, and G. Bertone, Evidence for dark matter in the inner Milky Way, Nature Phys. 11, 245 (2015).
  58. T. Igata and Y. Takamori, Periapsis shifts in dark matter distribution with a dense core, Phys. Rev. D 105, 124029 (2022).
  59. S. A. Hughes, Bound orbits of a slowly evolving black hole, Phys. Rev. D 100, 064001 (2019).
  60. P. C. Peters and J. Mathews, Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev. 131, 435 (1963).
  61. P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
  62. E. Berti, A. Buonanno, and C. M. Will, Estimating spinning binary parameters and testing alternative theories of gravity with LISA, Phys. Rev. D 71, 084025 (2005).
  63. T. Robson, N. J. Cornish, and C. Liu, The construction and use of LISA sensitivity curves, Classical Quantum Gravity 36, 105011 (2019).
  64. E. E. Flanagan and S. A. Hughes, Measuring gravitational waves from binary black hole coalescences: 2. The Waves’ information and its extraction, with and without templates, Phys. Rev. D 57, 4566 (1998).
  65. L. Lindblom, B. J. Owen, and D. A. Brown, Model Waveform Accuracy Standards for Gravitational Wave Data Analysis, Phys. Rev. D 78, 124020 (2008).
  66. C. Cutler and E. E. Flanagan, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?, Phys. Rev. D 49, 2658 (1994).
  67. E. Poisson and C. M. Will, Gravitational waves from inspiraling compact binaries: Parameter estimation using second postNewtonian wave forms, Phys. Rev. D 52, 848 (1995).
  68. C. Cutler, Angular resolution of the LISA gravitational wave detector, Phys. Rev. D 57, 7089 (1998).
  69. C. M. Will, Testing scalar - tensor gravity with gravitational wave observations of inspiraling compact binaries, Phys. Rev. D 50, 6058 (1994).
  70. C. Zhang, G. Fu, and N. Dai, Detecting dark matter halos with extreme mass-ratio inspirals, J. Cosmol. Astropart. Phys. 04 (2024) 088.
  71. E. Berti et al., Testing General Relativity with Present and Future Astrophysical Observations, Classical Quantum Gravity 32, 243001 (2015).
  72. K. Yagi and T. Tanaka, Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA, Phys. Rev. D 81, 064008 (2010), [Erratum: Phys.Rev.D 81, 109902 (2010)].
  73. R. Vicente and V. Cardoso, Dynamical friction of black holes in ultralight dark matter, Phys. Rev. D 105, 083008 (2022), arXiv:2201.08854 [gr-qc] .
  74. P. Mach and A. Odrzywo, Accretion of Dark Matter onto a Moving Schwarzschild Black Hole: An Exact Solution, Phys. Rev. Lett. 126, 101104 (2021), arXiv:2103.03595 [gr-qc] .
  75. T. K. Karydas, B. J. Kavanagh, and G. Bertone, Sharpening the dark matter signature in gravitational waveforms I: Accretion and eccentricity evolution, arXiv:2402.13053 .
  76. N. Becker and L. Sagunski, Comparing accretion disks and dark matter spikes in intermediate mass ratio inspirals, Phys. Rev. D 107, 083003 (2023).
  77. C. Zhang and Y. Gong, Detecting electric charge with extreme mass ratio inspirals, Phys. Rev. D 105, 124046 (2022).
Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.