Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TAPS: Topology-Aware Intra-Operator Parallelism Strategy Searching Algorithm for Deep Neural Networks (2301.04285v1)

Published 11 Jan 2023 in cs.DC

Abstract: TAPS is a Topology-Aware intra-operator Parallelism strategy Searching algorithm that generates intra-operator parallelism strategies by considering both intra-node and inter-node bandwidth. Most of the existing auto-parallelism works use the communication volume as the communication cost directly when generating strategies, which we prove to be sub-optimal in multi-nodes cases. We design a topology-aware cost model for multi-node intra-operator parallelism strategy searching. Numerical experiments demonstrate that TAPS can generate strategies with up to 85% fewer communication costs, which outperform the latest baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.