Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Evaluating the Performance of Low-Cost PM2.5 Sensors in Mobile Settings (2301.03847v1)

Published 10 Jan 2023 in stat.AP

Abstract: Low-cost sensors (LCS) for measuring air pollution are increasingly being deployed in mobile applications but questions concerning the quality of the measurements remain unanswered. For example, what is the best way to correct LCS data in a mobile setting? Which factors most significantly contribute to differences between mobile LCS data and higher-quality instruments? Can data from LCS be used to identify hotspots and generate generalizable pollutant concentration maps? To help address these questions we deployed low-cost PM2.5 sensors (Alphasense OPC-N3) and a research-grade instrument (TSI DustTrak) in a mobile laboratory in Boston, MA, USA. We first collocated these instruments with stationary PM2.5 reference monitors at nearby regulatory sites. Next, using the reference measurements, we developed different models to correct the OPC-N3 and DustTrak measurements, and then transferred the corrections to the mobile setting. We observed that more complex correction models appeared to perform better than simpler models in the stationary setting; however, when transferred to the mobile setting, corrected OPC-N3 measurements agreed less well with corrected DustTrak data. In general, corrections developed using minute-level collocation measurements transferred better to the mobile setting than corrections developed using hourly-averaged data. Mobile laboratory speed, OPC-N3 orientation relative to the direction of travel, date, hour-of-the-day, and road class together explain a small but significant amount of variation between corrected OPC-N3 and DustTrak measurements during the mobile deployment. Persistent hotspots identified by the OPC-N3s agreed with those identified by the DustTrak. Similarly, maps of PM2.5 distribution produced from the mobile corrected OPC-N3 and DustTrak measurements agreed well.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube