Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Broadcast News Summarization; a comparative study on Maximal Marginal Relevance (MMR) and Latent Semantic Analysis (LSA) (2301.02284v1)

Published 5 Jan 2023 in cs.CL

Abstract: The methods of automatic speech summarization are classified into two groups: supervised and unsupervised methods. Supervised methods are based on a set of features, while unsupervised methods perform summarization based on a set of rules. Latent Semantic Analysis (LSA) and Maximal Marginal Relevance (MMR) are considered the most important and well-known unsupervised methods in automatic speech summarization. This study set out to investigate the performance of two aforementioned unsupervised methods in transcriptions of Persian broadcast news summarization. The results show that in generic summarization, LSA outperforms MMR, and in query-based summarization, MMR outperforms LSA in broadcast news summarization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (2)

Summary

We haven't generated a summary for this paper yet.