Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ESSumm: Extractive Speech Summarization from Untranscribed Meeting (2209.06913v1)

Published 14 Sep 2022 in eess.AS, cs.CL, and cs.SD

Abstract: In this paper, we propose a novel architecture for direct extractive speech-to-speech summarization, ESSumm, which is an unsupervised model without dependence on intermediate transcribed text. Different from previous methods with text presentation, we are aimed at generating a summary directly from speech without transcription. First, a set of smaller speech segments are extracted based on speech signal's acoustic features. For each candidate speech segment, a distance-based summarization confidence score is designed for latent speech representation measure. Specifically, we leverage the off-the-shelf self-supervised convolutional neural network to extract the deep speech features from raw audio. Our approach automatically predicts the optimal sequence of speech segments that capture the key information with a target summary length. Extensive results on two well-known meeting datasets (AMI and ICSI corpora) show the effectiveness of our direct speech-based method to improve the summarization quality with untranscribed data. We also observe that our unsupervised speech-based method even performs on par with recent transcript-based summarization approaches, where extra speech recognition is required.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jun Wang (991 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.